Optimization of Four-Limit Practical Grid-Type LED Layout in Visible Light Communication System Based on K-Means-SCSO-RBF

IF 0.6 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Nanoelectronics and Optoelectronics Pub Date : 2024-07-01 DOI:10.1166/jno.2024.3618
Yue-Yue Li, Hui-Ying Zhang, Mei-Chun Sheng, Shi-Da Liang, Cheng-Yu Ma
{"title":"Optimization of Four-Limit Practical Grid-Type LED Layout in Visible Light Communication System Based on K-Means-SCSO-RBF","authors":"Yue-Yue Li, Hui-Ying Zhang, Mei-Chun Sheng, Shi-Da Liang, Cheng-Yu Ma","doi":"10.1166/jno.2024.3618","DOIUrl":null,"url":null,"abstract":"To ensure the uniform signal distribution of indoor visible light communication system and realize forecasting the optimal light source layout scheme under the random room state, this paper proposes a four-limit practical grid-type light source layout scheme that integrates the sand\n cat swarm algorithm and the RBF neural network of K-means clustering to realize the optimal design of the light source layout. Considering one reflection from the wall, the room state data and the actual optimal position coordinates of LEDs are used as the training dataset utilized to train\n the K-means-SCSO-RBF neural network model. The optimal indoor light source layout prediction model is established. The simulation results indicate that the model’s average prediction error for 20 randomly selected room states is 0.0151 m. The prediction errors for the 80 selected room\n states are mainly centered within 0 m to 0.01 m. Therefore, this study aids in identifying the optimal room light source layout. Therefore, the research content of this paper helps to determine the optimal layout of visible light sources in any room. It has the advantages of small prediction\n error, practicality and generalization. It provides favorable theoretical support for the layout of indoor visible light sources.","PeriodicalId":16446,"journal":{"name":"Journal of Nanoelectronics and Optoelectronics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanoelectronics and Optoelectronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1166/jno.2024.3618","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

To ensure the uniform signal distribution of indoor visible light communication system and realize forecasting the optimal light source layout scheme under the random room state, this paper proposes a four-limit practical grid-type light source layout scheme that integrates the sand cat swarm algorithm and the RBF neural network of K-means clustering to realize the optimal design of the light source layout. Considering one reflection from the wall, the room state data and the actual optimal position coordinates of LEDs are used as the training dataset utilized to train the K-means-SCSO-RBF neural network model. The optimal indoor light source layout prediction model is established. The simulation results indicate that the model’s average prediction error for 20 randomly selected room states is 0.0151 m. The prediction errors for the 80 selected room states are mainly centered within 0 m to 0.01 m. Therefore, this study aids in identifying the optimal room light source layout. Therefore, the research content of this paper helps to determine the optimal layout of visible light sources in any room. It has the advantages of small prediction error, practicality and generalization. It provides favorable theoretical support for the layout of indoor visible light sources.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 K-Means-SCSO-RBF 的可见光通信系统中四限位实用网格型 LED 布局优化
为保证室内可见光通信系统信号的均匀分布,实现随机房间状态下最优光源布局方案的预测,本文提出了一种四限实用网格型光源布局方案,该方案融合了沙猫群算法和K-means聚类的RBF神经网络,实现了光源布局的优化设计。考虑到墙壁的一次反射,将房间状态数据和 LED 的实际最佳位置坐标作为训练数据集,用于训练 K-means-SCSO-RBF 神经网络模型。建立了最佳室内光源布局预测模型。仿真结果表明,该模型对随机选取的 20 个房间状态的平均预测误差为 0.0151 m,对选取的 80 个房间状态的预测误差主要集中在 0 m 至 0.01 m 之间。因此,本文的研究内容有助于确定任何房间的最佳可见光光源布局。它具有预测误差小、实用性强、通用性强等优点。它为室内可见光光源的布局提供了有利的理论支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nanoelectronics and Optoelectronics
Journal of Nanoelectronics and Optoelectronics 工程技术-工程:电子与电气
自引率
16.70%
发文量
48
审稿时长
12.5 months
期刊最新文献
Design and Numerical Analysis of Double Encoder-Swinnets-A Novel Swin Transformers-Based Diabetic Foot Design of Fostered Power Terahertz VLSI Testing Using Deep Neural Network and Embrace User Intent Optimization Multi-Objective Intelligent Optimization Design Method of Microstrip Antenna Based on Back Propagation Neural Network Effective Stress Detection and Classification System Using African Buffalo Optimization and Recalling-Enhanced Recurrent Neural Network for Nano-Electronic Typed Data Hydrothermal Synthesis of Metal Ferrite Nanocomposites for Energy Storage Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1