Fluoride-promoted Ni-catalyzed cyanation of CO bond using CO2 and NH3

IF 9.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Chinese Chemical Letters Pub Date : 2024-07-02 DOI:10.1016/j.cclet.2024.110206
Yang Li , Yanan Dong , Zhihong Wei , Changzeng Yan , Zhen Li , Lin He , Yuehui Li
{"title":"Fluoride-promoted Ni-catalyzed cyanation of CO bond using CO2 and NH3","authors":"Yang Li ,&nbsp;Yanan Dong ,&nbsp;Zhihong Wei ,&nbsp;Changzeng Yan ,&nbsp;Zhen Li ,&nbsp;Lin He ,&nbsp;Yuehui Li","doi":"10.1016/j.cclet.2024.110206","DOIUrl":null,"url":null,"abstract":"<div><div>The selective conversion of CO<sub>2</sub> and NH<sub>3</sub> into valuable nitriles presents significant potential for CO<sub>2</sub> utilization. In this study, we exploited the synergistic interplay between silicon and fluoride to augment the nickel-catalyzed reductive cyanation of aryl pseudohalides containing silyl groups, utilizing CO<sub>2</sub> and NH<sub>3</sub> as the CN source. Our methodology exhibited exceptional compatibility with diverse functional groups, such as alcohols, ketones, ethers, esters, nitriles, olefins, pyridines, and quinolines, among others, as demonstrated by the successful synthesis of 58 different nitriles. Notably, we achieved high yields in the preparation of bifunctionalized molecules, including intermediates for perampanel, derived from <em>o</em>-silylaryl triflates, which are well-known as aryne precursors. Remarkably, no degradation of substrates or formation of aryne intermediates were observed. Mechanistic studies imply that the formation of penta-coordinated silyl isocyanate intermediates is crucial for the key C<img>C coupling step and the presence of vicinal silyl group in the substrate is beneficial to further make this step kinetically favorable.</div></div>","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"36 5","pages":"Article 110206"},"PeriodicalIF":9.4000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Chemical Letters","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001841724007253","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The selective conversion of CO2 and NH3 into valuable nitriles presents significant potential for CO2 utilization. In this study, we exploited the synergistic interplay between silicon and fluoride to augment the nickel-catalyzed reductive cyanation of aryl pseudohalides containing silyl groups, utilizing CO2 and NH3 as the CN source. Our methodology exhibited exceptional compatibility with diverse functional groups, such as alcohols, ketones, ethers, esters, nitriles, olefins, pyridines, and quinolines, among others, as demonstrated by the successful synthesis of 58 different nitriles. Notably, we achieved high yields in the preparation of bifunctionalized molecules, including intermediates for perampanel, derived from o-silylaryl triflates, which are well-known as aryne precursors. Remarkably, no degradation of substrates or formation of aryne intermediates were observed. Mechanistic studies imply that the formation of penta-coordinated silyl isocyanate intermediates is crucial for the key CC coupling step and the presence of vicinal silyl group in the substrate is beneficial to further make this step kinetically favorable.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 CO2 和 NH3 进行氟化物促进的 Ni 催化 C-O 键氰化反应
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chinese Chemical Letters
Chinese Chemical Letters 化学-化学综合
CiteScore
14.10
自引率
15.40%
发文量
8969
审稿时长
1.6 months
期刊介绍: Chinese Chemical Letters (CCL) (ISSN 1001-8417) was founded in July 1990. The journal publishes preliminary accounts in the whole field of chemistry, including inorganic chemistry, organic chemistry, analytical chemistry, physical chemistry, polymer chemistry, applied chemistry, etc.Chinese Chemical Letters does not accept articles previously published or scheduled to be published. To verify originality, your article may be checked by the originality detection service CrossCheck.
期刊最新文献
Graphical Abstracts IFC - Editorial Board/ Publication info Graphical Abstracts IFC - Editorial Board/ Publication info Stabilized carbon radical-mediated three-component functionalization of amino acid/peptide derivatives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1