Facile preparation of conductive silicone rubber composite foams with tunable cell morphologies and absorption-dominant characteristics

IF 3.4 3区 工程技术 Q2 CHEMISTRY, PHYSICAL Journal of Supercritical Fluids Pub Date : 2024-07-07 DOI:10.1016/j.supflu.2024.106346
Tianping Zhang , Menglong Xu , Weijun Zhen , Ling Zhao
{"title":"Facile preparation of conductive silicone rubber composite foams with tunable cell morphologies and absorption-dominant characteristics","authors":"Tianping Zhang ,&nbsp;Menglong Xu ,&nbsp;Weijun Zhen ,&nbsp;Ling Zhao","doi":"10.1016/j.supflu.2024.106346","DOIUrl":null,"url":null,"abstract":"<div><p>Flexible silicone rubber (SR) foams with tunable cellular morphologies were fabricated <em>via</em> supercritical CO<sub>2</sub> foaming. Conductive carbon black (CB) modified at a low cost and with high complex viscosity was preferentially selected. The effects of the pore size and void fraction on the electrical conductivity and dielectric permittivity of the SR/CB composite foams were carefully investigated. The pore size of the foams affected the specific shielding effectiveness (<em>SSE</em>) and absorption coefficient (<em>A</em>), whereas the variation in the void fraction did not generate evident changes. In comparison with its solid counterpart, a foam with a pore diameter of 59.9 μm showed a 50 % decrease in density, 31.6 % increase in absorptivity, and 95.7 % increase in <em>SSE</em>, demonstrating a considerable electromagnetic interference shielding effectiveness (EMI <em>SE</em>). Decreases in the pore size and void fraction of the foams improved compression modulus and strength. In addition, sample preparation process was simplified, making industrial production easier.</p></div>","PeriodicalId":17078,"journal":{"name":"Journal of Supercritical Fluids","volume":"213 ","pages":"Article 106346"},"PeriodicalIF":3.4000,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Supercritical Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0896844624001815","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Flexible silicone rubber (SR) foams with tunable cellular morphologies were fabricated via supercritical CO2 foaming. Conductive carbon black (CB) modified at a low cost and with high complex viscosity was preferentially selected. The effects of the pore size and void fraction on the electrical conductivity and dielectric permittivity of the SR/CB composite foams were carefully investigated. The pore size of the foams affected the specific shielding effectiveness (SSE) and absorption coefficient (A), whereas the variation in the void fraction did not generate evident changes. In comparison with its solid counterpart, a foam with a pore diameter of 59.9 μm showed a 50 % decrease in density, 31.6 % increase in absorptivity, and 95.7 % increase in SSE, demonstrating a considerable electromagnetic interference shielding effectiveness (EMI SE). Decreases in the pore size and void fraction of the foams improved compression modulus and strength. In addition, sample preparation process was simplified, making industrial production easier.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
轻松制备具有可调细胞形态和吸收主导特性的导电硅橡胶复合泡沫
通过超临界二氧化碳发泡制造了具有可调蜂窝形态的柔性硅橡胶(SR)泡沫。优先选择了成本低、复合粘度高的改性导电炭黑(CB)。研究人员仔细研究了孔径和空隙率对 SR/CB 复合泡沫的导电性和介电常数的影响。泡沫的孔径会影响特定屏蔽效能(SSE)和吸收系数(A),而空隙率的变化不会产生明显的变化。与固体泡沫相比,孔径为 59.9 μm 的泡沫密度降低了 50%,吸收率提高了 31.6%,SSE 提高了 95.7%,显示出相当高的电磁干扰屏蔽效能(EMI SE)。泡沫孔径和空隙率的减少提高了压缩模量和强度。此外,还简化了样品制备过程,使工业生产更加容易。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Supercritical Fluids
Journal of Supercritical Fluids 工程技术-工程:化工
CiteScore
7.60
自引率
10.30%
发文量
236
审稿时长
56 days
期刊介绍: The Journal of Supercritical Fluids is an international journal devoted to the fundamental and applied aspects of supercritical fluids and processes. Its aim is to provide a focused platform for academic and industrial researchers to report their findings and to have ready access to the advances in this rapidly growing field. Its coverage is multidisciplinary and includes both basic and applied topics. Thermodynamics and phase equilibria, reaction kinetics and rate processes, thermal and transport properties, and all topics related to processing such as separations (extraction, fractionation, purification, chromatography) nucleation and impregnation are within the scope. Accounts of specific engineering applications such as those encountered in food, fuel, natural products, minerals, pharmaceuticals and polymer industries are included. Topics related to high pressure equipment design, analytical techniques, sensors, and process control methodologies are also within the scope of the journal.
期刊最新文献
Flow mechanism and back gap windage loss of a sCO2 radial inflow turbine with impeller scallops Supercritical CO2 assisted bioMOF drug encapsulation and functionalization for delivery with a synergetic therapeutic value Supercritical CO2 green solvent extraction of Nepeta crispa: Evaluation of process optimization, chemical analysis, and biological activity IFC Contents continued
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1