{"title":"Impact of helical grooves on drag force and flow-induced noise of a cylinder under subcritical Reynolds numbers","authors":"Mingyang Xu, Wulong Hu, Zhangze Jiang","doi":"10.1063/5.0216273","DOIUrl":null,"url":null,"abstract":"The drag force and flow-induced noise of underwater vehicles significantly affect their hydrodynamic and stealth performance. This paper investigates the impact of helical grooves on the drag force and flow-induced noise of underwater vehicles through numerical simulations of the flow around cylinders with two types of helical grooves under various subcritical Reynolds numbers. The simulation scheme employs the large-eddy simulation framework combined with the Lighthill acoustic analogy method. The results show that the helical-groove structure can achieve reductions of up to 30% in drag and 5 dB in noise. These helical grooves have a significant effect in terms of suppressing the formation of a Karman vortex street downstream of the cylinder. Under subcritical Reynolds numbers, the drag-reduction effect of the helically grooved cylinder decreases as the number of helical grooves increases, while the noise-reduction effect increases with increasing number of helical grooves.","PeriodicalId":509470,"journal":{"name":"Physics of Fluids","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Fluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0216273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The drag force and flow-induced noise of underwater vehicles significantly affect their hydrodynamic and stealth performance. This paper investigates the impact of helical grooves on the drag force and flow-induced noise of underwater vehicles through numerical simulations of the flow around cylinders with two types of helical grooves under various subcritical Reynolds numbers. The simulation scheme employs the large-eddy simulation framework combined with the Lighthill acoustic analogy method. The results show that the helical-groove structure can achieve reductions of up to 30% in drag and 5 dB in noise. These helical grooves have a significant effect in terms of suppressing the formation of a Karman vortex street downstream of the cylinder. Under subcritical Reynolds numbers, the drag-reduction effect of the helically grooved cylinder decreases as the number of helical grooves increases, while the noise-reduction effect increases with increasing number of helical grooves.