Naveed Ahmed , Haishen Lu , Zhongbo Yu , Oluwafemi E. Adeyeri , Muhammad Shahid Iqbal , Jinbin Su
{"title":"A distributed modeling approach to water balance implications from changing land cover dynamics in permafrost environments","authors":"Naveed Ahmed , Haishen Lu , Zhongbo Yu , Oluwafemi E. Adeyeri , Muhammad Shahid Iqbal , Jinbin Su","doi":"10.1016/j.geosus.2024.06.004","DOIUrl":null,"url":null,"abstract":"<div><p>There is 78 % permafrost and seasonal frozen soil in the Yangtze River’s Source Region (SRYR), which is situated in the middle of the Qinghai-Xizang Plateau. Three distinct scenarios were developed in the Soil and Water Assessment Tool (SWAT) to model the effects of land cover change (LCC) on various water balance components. Discharge and percolation of groundwater have decreased by mid-December. This demonstrates the seasonal contributions of subsurface water, which diminish when soil freezes. During winter, when surface water inputs are low, groundwater storage becomes even more critical to ensure water supply due to this periodic trend. An impermeable layer underneath the active layer thickness decreases GWQ and PERC in LCC + permafrost scenario. The water transport and storage phase reached a critical point in August when precipitation, permafrost thawing, and snowmelt caused LATQ to surge. To prevent waterlogging and save water for dry periods, it is necessary to control this peak flow phase. Hydrological processes, permafrost dynamics, and land cover changes in the SRYR are difficult, according to the data. These interactions enhance water circulation throughout the year, recharge of groundwater supplies, surface runoff, and lateral flow. For the region’s water resource management to be effective in sustaining ecohydrology, ensuring appropriate water storage, and alleviating freshwater scarcity, these dynamics must be considered.</p></div>","PeriodicalId":52374,"journal":{"name":"Geography and Sustainability","volume":"5 4","pages":"Pages 561-576"},"PeriodicalIF":8.0000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266668392400049X/pdfft?md5=88906d41cf2d6d88e29b145ddb5f0603&pid=1-s2.0-S266668392400049X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geography and Sustainability","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266668392400049X","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
There is 78 % permafrost and seasonal frozen soil in the Yangtze River’s Source Region (SRYR), which is situated in the middle of the Qinghai-Xizang Plateau. Three distinct scenarios were developed in the Soil and Water Assessment Tool (SWAT) to model the effects of land cover change (LCC) on various water balance components. Discharge and percolation of groundwater have decreased by mid-December. This demonstrates the seasonal contributions of subsurface water, which diminish when soil freezes. During winter, when surface water inputs are low, groundwater storage becomes even more critical to ensure water supply due to this periodic trend. An impermeable layer underneath the active layer thickness decreases GWQ and PERC in LCC + permafrost scenario. The water transport and storage phase reached a critical point in August when precipitation, permafrost thawing, and snowmelt caused LATQ to surge. To prevent waterlogging and save water for dry periods, it is necessary to control this peak flow phase. Hydrological processes, permafrost dynamics, and land cover changes in the SRYR are difficult, according to the data. These interactions enhance water circulation throughout the year, recharge of groundwater supplies, surface runoff, and lateral flow. For the region’s water resource management to be effective in sustaining ecohydrology, ensuring appropriate water storage, and alleviating freshwater scarcity, these dynamics must be considered.
期刊介绍:
Geography and Sustainability serves as a central hub for interdisciplinary research and education aimed at promoting sustainable development from an integrated geography perspective. By bridging natural and human sciences, the journal fosters broader analysis and innovative thinking on global and regional sustainability issues.
Geography and Sustainability welcomes original, high-quality research articles, review articles, short communications, technical comments, perspective articles and editorials on the following themes:
Geographical Processes: Interactions with and between water, soil, atmosphere and the biosphere and their spatio-temporal variations;
Human-Environmental Systems: Interactions between humans and the environment, resilience of socio-ecological systems and vulnerability;
Ecosystem Services and Human Wellbeing: Ecosystem structure, processes, services and their linkages with human wellbeing;
Sustainable Development: Theory, practice and critical challenges in sustainable development.