Fibrotic extracellular matrix impacts cardiomyocyte phenotype and function in an iPSC-derived isogenic model of cardiac fibrosis

IF 6.4 2区 医学 Q1 MEDICAL LABORATORY TECHNOLOGY Translational Research Pub Date : 2024-07-16 DOI:10.1016/j.trsl.2024.07.003
Francesco Niro , Soraia Fernandes , Marco Cassani , Monica Apostolico , Jorge Oliver-De La Cruz , Daniel Pereira-Sousa , Stefania Pagliari , Vladimir Vinarsky , Zbyněk Zdráhal , David Potesil , Vaclav Pustka , Giulio Pompilio , Elena Sommariva , Davide Rovina , Angela Serena Maione , Luca Bersanini , Malin Becker , Marco Rasponi , Giancarlo Forte
{"title":"Fibrotic extracellular matrix impacts cardiomyocyte phenotype and function in an iPSC-derived isogenic model of cardiac fibrosis","authors":"Francesco Niro ,&nbsp;Soraia Fernandes ,&nbsp;Marco Cassani ,&nbsp;Monica Apostolico ,&nbsp;Jorge Oliver-De La Cruz ,&nbsp;Daniel Pereira-Sousa ,&nbsp;Stefania Pagliari ,&nbsp;Vladimir Vinarsky ,&nbsp;Zbyněk Zdráhal ,&nbsp;David Potesil ,&nbsp;Vaclav Pustka ,&nbsp;Giulio Pompilio ,&nbsp;Elena Sommariva ,&nbsp;Davide Rovina ,&nbsp;Angela Serena Maione ,&nbsp;Luca Bersanini ,&nbsp;Malin Becker ,&nbsp;Marco Rasponi ,&nbsp;Giancarlo Forte","doi":"10.1016/j.trsl.2024.07.003","DOIUrl":null,"url":null,"abstract":"<div><p>Cardiac fibrosis occurs following insults to the myocardium and is characterized by the abnormal accumulation of non-compliant extracellular matrix (ECM), which compromises cardiomyocyte contractile activity and eventually leads to heart failure. This phenomenon is driven by the activation of cardiac fibroblasts (cFbs) to myofibroblasts and results in changes in ECM biochemical, structural and mechanical properties. The lack of predictive <em>in vitro</em> models of heart fibrosis has so far hampered the search for innovative treatments, as most of the cellular-based <em>in vitro</em> reductionist models do not take into account the leading role of ECM cues in driving the progression of the pathology. Here, we devised a single-step decellularization protocol to obtain and thoroughly characterize the biochemical and micro-mechanical properties of the ECM secreted by activated cFbs differentiated from human induced pluripotent stem cells (iPSCs). We activated iPSC-derived cFbs to the myofibroblast phenotype by tuning basic fibroblast growth factor (bFGF) and transforming growth factor beta 1 (TGF-β1) signalling and confirmed that activated cells acquired key features of myofibroblast phenotype, like SMAD2/3 nuclear shuttling, the formation of aligned alpha-smooth muscle actin (α−SMA)-rich stress fibres and increased focal adhesions (FAs) assembly. Next, we used Mass Spectrometry, nanoindentation, scanning electron and confocal microscopy to unveil the characteristic composition and the visco-elastic properties of the abundant, collagen-rich ECM deposited by cardiac myofibroblasts <em>in vitro</em>. Finally, we demonstrated that the fibrotic ECM activates mechanosensitive pathways in iPSC-derived cardiomyocytes, impacting on their shape, sarcomere assembly, phenotype, and calcium handling properties. We thus propose human bio-inspired decellularized matrices as animal-free, isogenic cardiomyocyte culture substrates recapitulating key pathophysiological changes occurring at the cellular level during cardiac fibrosis.</p></div>","PeriodicalId":23226,"journal":{"name":"Translational Research","volume":"273 ","pages":"Pages 58-77"},"PeriodicalIF":6.4000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1931524424001440/pdfft?md5=776bb9b06c146f8fdff2caffc3b1b0d6&pid=1-s2.0-S1931524424001440-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1931524424001440","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cardiac fibrosis occurs following insults to the myocardium and is characterized by the abnormal accumulation of non-compliant extracellular matrix (ECM), which compromises cardiomyocyte contractile activity and eventually leads to heart failure. This phenomenon is driven by the activation of cardiac fibroblasts (cFbs) to myofibroblasts and results in changes in ECM biochemical, structural and mechanical properties. The lack of predictive in vitro models of heart fibrosis has so far hampered the search for innovative treatments, as most of the cellular-based in vitro reductionist models do not take into account the leading role of ECM cues in driving the progression of the pathology. Here, we devised a single-step decellularization protocol to obtain and thoroughly characterize the biochemical and micro-mechanical properties of the ECM secreted by activated cFbs differentiated from human induced pluripotent stem cells (iPSCs). We activated iPSC-derived cFbs to the myofibroblast phenotype by tuning basic fibroblast growth factor (bFGF) and transforming growth factor beta 1 (TGF-β1) signalling and confirmed that activated cells acquired key features of myofibroblast phenotype, like SMAD2/3 nuclear shuttling, the formation of aligned alpha-smooth muscle actin (α−SMA)-rich stress fibres and increased focal adhesions (FAs) assembly. Next, we used Mass Spectrometry, nanoindentation, scanning electron and confocal microscopy to unveil the characteristic composition and the visco-elastic properties of the abundant, collagen-rich ECM deposited by cardiac myofibroblasts in vitro. Finally, we demonstrated that the fibrotic ECM activates mechanosensitive pathways in iPSC-derived cardiomyocytes, impacting on their shape, sarcomere assembly, phenotype, and calcium handling properties. We thus propose human bio-inspired decellularized matrices as animal-free, isogenic cardiomyocyte culture substrates recapitulating key pathophysiological changes occurring at the cellular level during cardiac fibrosis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纤维化细胞外基质影响 iPSC 衍生的异源心脏纤维化模型中的心肌细胞表型和功能
心肌受到损伤后会出现心肌纤维化,其特征是不顺应的细胞外基质(ECM)异常积聚,从而损害心肌细胞的收缩活动,最终导致心力衰竭。这种现象是由心脏成纤维细胞(cFbs)活化为肌成纤维细胞驱动的,并导致 ECM 的生化、结构和机械特性发生变化。由于大多数基于细胞的体外还原模型没有考虑到 ECM 因素在推动病理进展中的主导作用,因此迄今为止,缺乏心脏纤维化的预测性体外模型阻碍了对创新疗法的探索。在这里,我们设计了一种单步脱细胞方案,以获得并彻底表征由人类诱导多能干细胞(iPSCs)分化出的活化 cFbs 所分泌的 ECM 的生化和微机械特性。我们通过调节碱性成纤维细胞生长因子(bFGF)和转化生长因子β1(TGF-β1)信号,将iPSC衍生的cFbs活化为肌成纤维细胞表型,并证实活化细胞获得了肌成纤维细胞表型的关键特征,如SMAD2/3核穿梭、富含α-平滑肌肌动蛋白(α-SMA)的对齐应力纤维的形成以及局灶粘附(FAs)组装的增加。接下来,我们利用质谱分析、纳米压痕、扫描电子显微镜和共聚焦显微镜揭示了心肌成纤维细胞在体外沉积的富含胶原蛋白的 ECM 的特征成分和粘弹性能。最后,我们证明了纤维化 ECM 激活了 iPSC 衍生心肌细胞的机械敏感途径,影响了它们的形状、肌节组装、表型和钙处理特性。因此,我们建议将人类生物启发的脱细胞基质作为不含动物成分的同源心肌细胞培养基质,以再现心脏纤维化过程中细胞水平发生的关键病理生理学变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Translational Research
Translational Research 医学-医学:内科
CiteScore
15.70
自引率
0.00%
发文量
195
审稿时长
14 days
期刊介绍: Translational Research (formerly The Journal of Laboratory and Clinical Medicine) delivers original investigations in the broad fields of laboratory, clinical, and public health research. Published monthly since 1915, it keeps readers up-to-date on significant biomedical research from all subspecialties of medicine.
期刊最新文献
Contents Contents Masthead Lympho-myeloid aggregate-infiltrating CD20+ B cells display a double-negative phenotype and correlate with poor prognosis in esophageal squamous cell carcinoma Editorial Advisory Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1