Declining suitability for conversion of drylands to paddy fields in Northeast China: Impact of future climate and socio-economic changes

IF 8 1区 环境科学与生态学 Q1 GEOGRAPHY, PHYSICAL Geography and Sustainability Pub Date : 2025-02-01 DOI:10.1016/j.geosus.2024.05.004
Jiacheng Qian , Huafu Zhao , Xiaoxiao Wang , Tao Wang , Zhe Feng , Congjie Cao , Xiao Li , Aihui Zhang
{"title":"Declining suitability for conversion of drylands to paddy fields in Northeast China: Impact of future climate and socio-economic changes","authors":"Jiacheng Qian ,&nbsp;Huafu Zhao ,&nbsp;Xiaoxiao Wang ,&nbsp;Tao Wang ,&nbsp;Zhe Feng ,&nbsp;Congjie Cao ,&nbsp;Xiao Li ,&nbsp;Aihui Zhang","doi":"10.1016/j.geosus.2024.05.004","DOIUrl":null,"url":null,"abstract":"<div><div>Conversion of dryland to paddy fields (CDPF) is an effective way to transition from rain-fed to irrigated agriculture, helping to mitigate the effects of climate change on agriculture and increase yields to meet growing food demand. However, the suitability of CDPF is spatio-temporally dynamic but has often been neglected in previous studies. To fill this knowledge gap, this research developed a novel method for quantifying the suitability of CDPF, based on the MaxEnt model for application in Northeast China. We explored the spatiotemporal characteristics of the suitability of CDPF under the baseline scenario (2010–2020), and future projections (2030–2090) coupled with climate change and socioeconomic development scenarios (SSP126, SSP245, and SSP585), and revealed the driving factors behind it. Based on this, we identified potential priority areas for future CDPF implementation. The results show that the suitability of CDPF projects implemented in the past ten years is relatively high. Compared with the baseline scenario, the suitability of CDPF under the future scenarios will decline overall, with the lightest decrease in the RCP585 and the most severe decrease in the RCP245. The key drivers affecting the suitability of CDPF are elevation, slope, population count, total nitrogen, soil organic carbon content, and precipitation seasonality. The potential priority areas for the future CDPF range from 6,284.61 km<sup>2</sup> to 37,006.02 km<sup>2</sup>. These findings demonstrate the challenges of CDPF in adapting to climate change and food security, and provide insights for food-producing regions around the world facing climate crises.</div></div>","PeriodicalId":52374,"journal":{"name":"Geography and Sustainability","volume":"6 1","pages":"Article 100199"},"PeriodicalIF":8.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geography and Sustainability","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666683924000452","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Conversion of dryland to paddy fields (CDPF) is an effective way to transition from rain-fed to irrigated agriculture, helping to mitigate the effects of climate change on agriculture and increase yields to meet growing food demand. However, the suitability of CDPF is spatio-temporally dynamic but has often been neglected in previous studies. To fill this knowledge gap, this research developed a novel method for quantifying the suitability of CDPF, based on the MaxEnt model for application in Northeast China. We explored the spatiotemporal characteristics of the suitability of CDPF under the baseline scenario (2010–2020), and future projections (2030–2090) coupled with climate change and socioeconomic development scenarios (SSP126, SSP245, and SSP585), and revealed the driving factors behind it. Based on this, we identified potential priority areas for future CDPF implementation. The results show that the suitability of CDPF projects implemented in the past ten years is relatively high. Compared with the baseline scenario, the suitability of CDPF under the future scenarios will decline overall, with the lightest decrease in the RCP585 and the most severe decrease in the RCP245. The key drivers affecting the suitability of CDPF are elevation, slope, population count, total nitrogen, soil organic carbon content, and precipitation seasonality. The potential priority areas for the future CDPF range from 6,284.61 km2 to 37,006.02 km2. These findings demonstrate the challenges of CDPF in adapting to climate change and food security, and provide insights for food-producing regions around the world facing climate crises.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中国东北地区旱地改水田的适宜性下降:未来气候和社会经济变化的影响
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geography and Sustainability
Geography and Sustainability Social Sciences-Geography, Planning and Development
CiteScore
16.70
自引率
3.10%
发文量
32
审稿时长
41 days
期刊介绍: Geography and Sustainability serves as a central hub for interdisciplinary research and education aimed at promoting sustainable development from an integrated geography perspective. By bridging natural and human sciences, the journal fosters broader analysis and innovative thinking on global and regional sustainability issues. Geography and Sustainability welcomes original, high-quality research articles, review articles, short communications, technical comments, perspective articles and editorials on the following themes: Geographical Processes: Interactions with and between water, soil, atmosphere and the biosphere and their spatio-temporal variations; Human-Environmental Systems: Interactions between humans and the environment, resilience of socio-ecological systems and vulnerability; Ecosystem Services and Human Wellbeing: Ecosystem structure, processes, services and their linkages with human wellbeing; Sustainable Development: Theory, practice and critical challenges in sustainable development.
期刊最新文献
Phenological control of vegetation biophysical feedbacks to the regional climate Targeted poverty alleviation promotes sustainable socio-economic and ecological development in China’s poor areas Extreme weather characteristics and influences on urban ecosystem services in Wuhan Urban Agglomeration Essential contribution of habitats in non-protected areas to climate-driven species migration in China Declining suitability for conversion of drylands to paddy fields in Northeast China: Impact of future climate and socio-economic changes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1