Jiacheng Qian , Huafu Zhao , Xiaoxiao Wang , Tao Wang , Zhe Feng , Congjie Cao , Xiao Li , Aihui Zhang
{"title":"Declining suitability for conversion of drylands to paddy fields in Northeast China: Impact of future climate and socio-economic changes","authors":"Jiacheng Qian , Huafu Zhao , Xiaoxiao Wang , Tao Wang , Zhe Feng , Congjie Cao , Xiao Li , Aihui Zhang","doi":"10.1016/j.geosus.2024.05.004","DOIUrl":null,"url":null,"abstract":"<div><div>Conversion of dryland to paddy fields (CDPF) is an effective way to transition from rain-fed to irrigated agriculture, helping to mitigate the effects of climate change on agriculture and increase yields to meet growing food demand. However, the suitability of CDPF is spatio-temporally dynamic but has often been neglected in previous studies. To fill this knowledge gap, this research developed a novel method for quantifying the suitability of CDPF, based on the MaxEnt model for application in Northeast China. We explored the spatiotemporal characteristics of the suitability of CDPF under the baseline scenario (2010–2020), and future projections (2030–2090) coupled with climate change and socioeconomic development scenarios (SSP126, SSP245, and SSP585), and revealed the driving factors behind it. Based on this, we identified potential priority areas for future CDPF implementation. The results show that the suitability of CDPF projects implemented in the past ten years is relatively high. Compared with the baseline scenario, the suitability of CDPF under the future scenarios will decline overall, with the lightest decrease in the RCP585 and the most severe decrease in the RCP245. The key drivers affecting the suitability of CDPF are elevation, slope, population count, total nitrogen, soil organic carbon content, and precipitation seasonality. The potential priority areas for the future CDPF range from 6,284.61 km<sup>2</sup> to 37,006.02 km<sup>2</sup>. These findings demonstrate the challenges of CDPF in adapting to climate change and food security, and provide insights for food-producing regions around the world facing climate crises.</div></div>","PeriodicalId":52374,"journal":{"name":"Geography and Sustainability","volume":"6 1","pages":"Article 100199"},"PeriodicalIF":8.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geography and Sustainability","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666683924000452","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Conversion of dryland to paddy fields (CDPF) is an effective way to transition from rain-fed to irrigated agriculture, helping to mitigate the effects of climate change on agriculture and increase yields to meet growing food demand. However, the suitability of CDPF is spatio-temporally dynamic but has often been neglected in previous studies. To fill this knowledge gap, this research developed a novel method for quantifying the suitability of CDPF, based on the MaxEnt model for application in Northeast China. We explored the spatiotemporal characteristics of the suitability of CDPF under the baseline scenario (2010–2020), and future projections (2030–2090) coupled with climate change and socioeconomic development scenarios (SSP126, SSP245, and SSP585), and revealed the driving factors behind it. Based on this, we identified potential priority areas for future CDPF implementation. The results show that the suitability of CDPF projects implemented in the past ten years is relatively high. Compared with the baseline scenario, the suitability of CDPF under the future scenarios will decline overall, with the lightest decrease in the RCP585 and the most severe decrease in the RCP245. The key drivers affecting the suitability of CDPF are elevation, slope, population count, total nitrogen, soil organic carbon content, and precipitation seasonality. The potential priority areas for the future CDPF range from 6,284.61 km2 to 37,006.02 km2. These findings demonstrate the challenges of CDPF in adapting to climate change and food security, and provide insights for food-producing regions around the world facing climate crises.
期刊介绍:
Geography and Sustainability serves as a central hub for interdisciplinary research and education aimed at promoting sustainable development from an integrated geography perspective. By bridging natural and human sciences, the journal fosters broader analysis and innovative thinking on global and regional sustainability issues.
Geography and Sustainability welcomes original, high-quality research articles, review articles, short communications, technical comments, perspective articles and editorials on the following themes:
Geographical Processes: Interactions with and between water, soil, atmosphere and the biosphere and their spatio-temporal variations;
Human-Environmental Systems: Interactions between humans and the environment, resilience of socio-ecological systems and vulnerability;
Ecosystem Services and Human Wellbeing: Ecosystem structure, processes, services and their linkages with human wellbeing;
Sustainable Development: Theory, practice and critical challenges in sustainable development.