Qineng Zhou, Chen Wang, Haowei Hu, Weixin Tong, Jingbo Xu, Jie Ji
{"title":"Study on the plume flow behavior and air entrainment characteristics of co-burning fires","authors":"Qineng Zhou, Chen Wang, Haowei Hu, Weixin Tong, Jingbo Xu, Jie Ji","doi":"10.1016/j.firesaf.2024.104211","DOIUrl":null,"url":null,"abstract":"<div><p>In most of the fire accidents, there is large oil layer leaking into the fire dike and multiple fire points burning simultaneously. A series of numerical simulations for co-burning of a dike and double tanks (co-burning) with different spacing <em>S</em> have been conducted to study the plume flow behavior and air entrainment characteristics. The simulation results show that there is a conical fuel-rich region on the upper rim of the tank which results in the entrained air to flow circularly along the surface of the conical region. With the increase of <em>S</em>, the restriction effect of tank sidewall on air entrainment from environment enhances, while the restriction degree of air entrainment in the middle area of the double tanks decreases, affecting the distribution of plume velocity field and temperature field. And under the coupling effect of them, the tilt degree of tank flame decreases with the increase of <em>S</em> (from 0.3 m to 0.7 m). The air entrainment restriction coefficient <span><math><mrow><msub><mi>α</mi><mi>B</mi></msub></mrow></math></span>, <span><math><mrow><msub><mrow><mspace></mspace><mi>α</mi></mrow><mi>S</mi></msub></mrow></math></span> are introduced to characterize the restriction effect of air entrainment between the external dike fire and the double tank fires. Based on this, a co-burning plume entrainment model has been established, which can be applicable to different spacing <em>S</em>.</p></div>","PeriodicalId":50445,"journal":{"name":"Fire Safety Journal","volume":"148 ","pages":"Article 104211"},"PeriodicalIF":3.4000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Safety Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0379711224001243","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
In most of the fire accidents, there is large oil layer leaking into the fire dike and multiple fire points burning simultaneously. A series of numerical simulations for co-burning of a dike and double tanks (co-burning) with different spacing S have been conducted to study the plume flow behavior and air entrainment characteristics. The simulation results show that there is a conical fuel-rich region on the upper rim of the tank which results in the entrained air to flow circularly along the surface of the conical region. With the increase of S, the restriction effect of tank sidewall on air entrainment from environment enhances, while the restriction degree of air entrainment in the middle area of the double tanks decreases, affecting the distribution of plume velocity field and temperature field. And under the coupling effect of them, the tilt degree of tank flame decreases with the increase of S (from 0.3 m to 0.7 m). The air entrainment restriction coefficient , are introduced to characterize the restriction effect of air entrainment between the external dike fire and the double tank fires. Based on this, a co-burning plume entrainment model has been established, which can be applicable to different spacing S.
在大多数火灾事故中,都会有大量油层渗漏到防火堤中,并有多个着火点同时燃烧。我们对不同间距 S 的堤坝和双油罐(共同燃烧)进行了一系列数值模拟,以研究烟流行为和空气夹带特性。模拟结果表明,罐体上缘存在一个锥形富燃料区,导致夹带的空气沿锥形区表面环流。随着 S 的增大,油箱侧壁对环境夹带空气的限制作用增强,而双层油箱中间区域对夹带空气的限制程度减小,从而影响烟流速度场和温度场的分布。在二者的耦合作用下,随着 S 的增大(从 0.3 米到 0.7 米),水箱火焰的倾斜度减小。引入空气夹带限制系数 αB、αS 来表征外堤火与双罐火之间的空气夹带限制效应。在此基础上,建立了可适用于不同间距 S 的共燃烟羽夹带模型。
期刊介绍:
Fire Safety Journal is the leading publication dealing with all aspects of fire safety engineering. Its scope is purposefully wide, as it is deemed important to encourage papers from all sources within this multidisciplinary subject, thus providing a forum for its further development as a distinct engineering discipline. This is an essential step towards gaining a status equal to that enjoyed by the other engineering disciplines.