A Rapid Circuit Phase Error Identification and Compensation Method for MEMS QMG Achieving 99.7% Reduction in ZRO Drift

IF 2.5 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Microelectromechanical Systems Pub Date : 2024-07-16 DOI:10.1109/JMEMS.2024.3424810
Yi Zhou;Zhuolin Yu;Zhaorong Ke;Shaolei Ge;Shenhu Huang;Jianpeng Wang;Tong Zhou;Yan Su
{"title":"A Rapid Circuit Phase Error Identification and Compensation Method for MEMS QMG Achieving 99.7% Reduction in ZRO Drift","authors":"Yi Zhou;Zhuolin Yu;Zhaorong Ke;Shaolei Ge;Shenhu Huang;Jianpeng Wang;Tong Zhou;Yan Su","doi":"10.1109/JMEMS.2024.3424810","DOIUrl":null,"url":null,"abstract":"To solve the problem of circuit phase error induced quadrature error coupling into the rate output of the gyroscope operating in force-to-rebalance (FRB) mode, a rapid circuit phase error identification and compensation method is proposed in this paper. Firstly, the main sources of phase error in control circuit and the influence of phase error on drive mode and sense mode of micro-electro-mechanical system (MEMS) quad mass gyroscope (QMG) are theoretically analyzed. Then, a rapid circuit phase error identification and compensation method utilizing Recursive Least Squares (RLS) algorithm is proposed, achieving identification time under 1 s and 99.7% reduction in zero-rate output (ZRO) drift. This method leverages the disparity between the magnitudes of quadrature error and damping coupling error during the rapid temperature rise of the gyroscope after startup. The output of closed-loop quadrature suppression and FRB loop is used as the input of the RLS algorithm. The algorithm is carefully engineered to ascertain the phase error within 1s, thereby facilitating the expeditious rectification of the control circuit’s phase error. The effectiveness of the proposed method is verified through rotation experiments, with an identification error of less than 0.2%. The experimental results show that when using this method, the bias instability (BI) of the gyroscope is reduced from 2.218 °/h to 0.165 °/h, a total reduction of 13.4 times, while the ARW remains unchanged.","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"33 5","pages":"646-655"},"PeriodicalIF":2.5000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microelectromechanical Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10599545/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

To solve the problem of circuit phase error induced quadrature error coupling into the rate output of the gyroscope operating in force-to-rebalance (FRB) mode, a rapid circuit phase error identification and compensation method is proposed in this paper. Firstly, the main sources of phase error in control circuit and the influence of phase error on drive mode and sense mode of micro-electro-mechanical system (MEMS) quad mass gyroscope (QMG) are theoretically analyzed. Then, a rapid circuit phase error identification and compensation method utilizing Recursive Least Squares (RLS) algorithm is proposed, achieving identification time under 1 s and 99.7% reduction in zero-rate output (ZRO) drift. This method leverages the disparity between the magnitudes of quadrature error and damping coupling error during the rapid temperature rise of the gyroscope after startup. The output of closed-loop quadrature suppression and FRB loop is used as the input of the RLS algorithm. The algorithm is carefully engineered to ascertain the phase error within 1s, thereby facilitating the expeditious rectification of the control circuit’s phase error. The effectiveness of the proposed method is verified through rotation experiments, with an identification error of less than 0.2%. The experimental results show that when using this method, the bias instability (BI) of the gyroscope is reduced from 2.218 °/h to 0.165 °/h, a total reduction of 13.4 times, while the ARW remains unchanged.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于 MEMS QMG 的快速电路相位误差识别和补偿方法,可将 ZRO 漂移降低 99.7
为解决电路相位误差引起的正交误差耦合到力平衡(FRB)模式下陀螺仪速率输出的问题,本文提出了一种快速电路相位误差识别和补偿方法。首先,从理论上分析了控制电路中相位误差的主要来源以及相位误差对微机电系统(MEMS)四质量陀螺仪(QMG)驱动模式和感应模式的影响。然后,提出了一种利用递归最小二乘法 (RLS) 算法的快速电路相位误差识别和补偿方法,识别时间小于 1 秒,零速率输出漂移 (ZRO) 降低 99.7%。该方法利用了陀螺仪启动后温度快速上升时正交误差和阻尼耦合误差大小之间的差异。闭环正交抑制和 FRB 环路的输出被用作 RLS 算法的输入。该算法经过精心设计,可在 1 秒内确定相位误差,从而有助于快速纠正控制电路的相位误差。通过旋转实验验证了所提方法的有效性,识别误差小于 0.2%。实验结果表明,使用这种方法后,陀螺仪的偏置不稳定性(BI)从 2.218 °/h 降低到 0.165 °/h,总共降低了 13.4 倍,而 ARW 保持不变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Microelectromechanical Systems
Journal of Microelectromechanical Systems 工程技术-工程:电子与电气
CiteScore
6.20
自引率
7.40%
发文量
115
审稿时长
7.5 months
期刊介绍: The topics of interest include, but are not limited to: devices ranging in size from microns to millimeters, IC-compatible fabrication techniques, other fabrication techniques, measurement of micro phenomena, theoretical results, new materials and designs, micro actuators, micro robots, micro batteries, bearings, wear, reliability, electrical interconnections, micro telemanipulation, and standards appropriate to MEMS. Application examples and application oriented devices in fluidics, optics, bio-medical engineering, etc., are also of central interest.
期刊最新文献
Front Cover Table of Contents Journal of Microelectromechanical Systems Publication Information TechRxiv: Share Your Preprint Research with the World! Capacitive Micromachined Transducers With Out-of-Plane Repulsive Actuation for Enhancing Ultrasound Transmission in Air
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1