Bidding efficiently in Simultaneous Ascending Auctions with incomplete information using Monte Carlo Tree Search and determinization

Alexandre Pacaud, Aurélien Bechler, Marceau Coupechoux
{"title":"Bidding efficiently in Simultaneous Ascending Auctions with incomplete information using Monte Carlo Tree Search and determinization","authors":"Alexandre Pacaud, Aurélien Bechler, Marceau Coupechoux","doi":"arxiv-2407.11715","DOIUrl":null,"url":null,"abstract":"For decades, Simultaneous Ascending Auction (SAA) has been the most widely\nused mechanism for spectrum auctions, and it has recently gained popularity for\nallocating 5G licenses in many countries. Despite its relatively simple rules,\nSAA introduces a complex strategic game with an unknown optimal bidding\nstrategy. Given the high stakes involved, with billions of euros sometimes on\nthe line, developing an efficient bidding strategy is of utmost importance. In\nthis work, we extend our previous method, a Simultaneous Move Monte-Carlo Tree\nSearch (SM-MCTS) based algorithm named $SMS^{\\alpha}$ to incomplete information\nframework. For this purpose, we compare three determinization approaches which\nallow us to rely on complete information SM-MCTS. This algorithm addresses, in\nincomplete framework, the four key strategic issues of SAA: the exposure\nproblem, the own price effect, budget constraints, and the eligibility\nmanagement problem. Through extensive numerical experiments on instances of\nrealistic size with an uncertain framework, we show that $SMS^{\\alpha}$ largely\noutperforms state-of-the-art algorithms by achieving higher expected utility\nwhile taking less risks, no matter which determinization method is chosen.","PeriodicalId":501316,"journal":{"name":"arXiv - CS - Computer Science and Game Theory","volume":"250 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computer Science and Game Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.11715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For decades, Simultaneous Ascending Auction (SAA) has been the most widely used mechanism for spectrum auctions, and it has recently gained popularity for allocating 5G licenses in many countries. Despite its relatively simple rules, SAA introduces a complex strategic game with an unknown optimal bidding strategy. Given the high stakes involved, with billions of euros sometimes on the line, developing an efficient bidding strategy is of utmost importance. In this work, we extend our previous method, a Simultaneous Move Monte-Carlo Tree Search (SM-MCTS) based algorithm named $SMS^{\alpha}$ to incomplete information framework. For this purpose, we compare three determinization approaches which allow us to rely on complete information SM-MCTS. This algorithm addresses, in incomplete framework, the four key strategic issues of SAA: the exposure problem, the own price effect, budget constraints, and the eligibility management problem. Through extensive numerical experiments on instances of realistic size with an uncertain framework, we show that $SMS^{\alpha}$ largely outperforms state-of-the-art algorithms by achieving higher expected utility while taking less risks, no matter which determinization method is chosen.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用蒙特卡洛树搜索和确定法在信息不完全的同时升序拍卖中高效竞价
几十年来,同步递增拍卖(SAA)一直是最广泛使用的频谱拍卖机制,最近在许多国家的 5G 许可分配中也越来越受欢迎。尽管 SAA 的规则相对简单,但它引入了一个复杂的战略博弈,其最佳竞标策略尚不可知。由于涉及的赌注很大,有时甚至高达数十亿欧元,因此制定有效的竞标策略至关重要。在这项工作中,我们将之前的方法--基于同步移动蒙特卡洛树搜索(SM-MCTS)的算法(名为 $SMS^{\alpha}$)扩展到了不完全信息框架。为此,我们比较了三种确定方法,它们允许我们依赖完整信息 SM-MCTS。该算法在不完全框架下解决了 SAA 的四个关键战略问题:风险暴露问题、自有价格效应、预算约束和资格管理问题。通过在不确定框架下对现实大小的实例进行大量数值实验,我们发现,无论选择哪种确定方法,$SMS^{\alpha}$ 都能实现更高的预期效用,同时承担更少的风险,在很大程度上优于最先进的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MALADY: Multiclass Active Learning with Auction Dynamics on Graphs Mechanism Design for Extending the Accessibility of Facilities Common revenue allocation in DMUs with two stages based on DEA cross-efficiency and cooperative game The common revenue allocation based on modified Shapley value and DEA cross-efficiency On Robustness to $k$-wise Independence of Optimal Bayesian Mechanisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1