Facet-controlled growth and soft-chemical exfoliation of two-dimensional titanium dioxide nanosheets

IF 4.6 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Nanoscale Advances Pub Date : 2024-07-16 DOI:10.1039/D4NA00442F
Christian Harito, Munawar Khalil, Leanddas Nurdiwijayanto, Ni Luh Wulan Septiani, Syauqi Abdurrahman Abrori, Budi Riza Putra, Syed Z. J. Zaidi, Takaaki Taniguchi, Brian Yuliarto and Frank C. Walsh
{"title":"Facet-controlled growth and soft-chemical exfoliation of two-dimensional titanium dioxide nanosheets","authors":"Christian Harito, Munawar Khalil, Leanddas Nurdiwijayanto, Ni Luh Wulan Septiani, Syauqi Abdurrahman Abrori, Budi Riza Putra, Syed Z. J. Zaidi, Takaaki Taniguchi, Brian Yuliarto and Frank C. Walsh","doi":"10.1039/D4NA00442F","DOIUrl":null,"url":null,"abstract":"<p >TiO<small><sub>2</sub></small> remains one of the most popular materials used in catalysts, photovoltaics, coatings, and electronics due to its abundance, chemical stability, and excellent catalytic properties. The tailoring of the TiO<small><sub>2</sub></small> structure into two-dimensional nanosheets prompted the successful isolation of graphene and MXenes. In this review, facet-controlled TiO<small><sub>2</sub></small> and monolayer titanate are outlined, covering their synthesis route and formation mechanism. The reactive facet of TiO<small><sub>2</sub></small> is usually controlled by a capping agent. In contrast, the monolayer titanate is achieved by ion-exchange and delamination of layered titanates. Each route leads to 2D structures with unique physical and chemical properties, which expands its utilisation into several niche applications. We elaborate the detailed outlook for the future use and research studies of facet-controlled TiO<small><sub>2</sub></small> and monolayer titanates. Advantages and disadvantages of both structures are provided, along with suggested applications for each type of 2D TiO<small><sub>2</sub></small> nanosheets.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/na/d4na00442f?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/na/d4na00442f","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

TiO2 remains one of the most popular materials used in catalysts, photovoltaics, coatings, and electronics due to its abundance, chemical stability, and excellent catalytic properties. The tailoring of the TiO2 structure into two-dimensional nanosheets prompted the successful isolation of graphene and MXenes. In this review, facet-controlled TiO2 and monolayer titanate are outlined, covering their synthesis route and formation mechanism. The reactive facet of TiO2 is usually controlled by a capping agent. In contrast, the monolayer titanate is achieved by ion-exchange and delamination of layered titanates. Each route leads to 2D structures with unique physical and chemical properties, which expands its utilisation into several niche applications. We elaborate the detailed outlook for the future use and research studies of facet-controlled TiO2 and monolayer titanates. Advantages and disadvantages of both structures are provided, along with suggested applications for each type of 2D TiO2 nanosheets.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二维二氧化钛纳米片的面控生长和软化学剥离
二氧化钛因其丰富的资源、化学稳定性和优异的催化特性,一直是催化剂、光伏、涂料和电子产品中最常用的材料之一。将二氧化钛结构定制成二维纳米片促使了石墨烯和二氧化二烯的成功分离。本综述概述了面控二氧化钛和单层钛酸酯的合成路线和形成机理。二氧化钛的反应面通常由封端剂控制。而单层钛酸酯则是通过离子交换和层状钛酸酯的分层来实现的。每种方法都能产生具有独特物理和化学特性的二维结构,从而将其应用扩展到多个细分领域。我们详细阐述了面控二氧化钛和单层钛酸盐的未来应用和研究前景。我们提供了这两种结构的优缺点,以及每种二维二氧化钛纳米片的应用建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanoscale Advances
Nanoscale Advances Multiple-
CiteScore
8.00
自引率
2.10%
发文量
461
审稿时长
9 weeks
期刊最新文献
L-cysteine capped MoS2 QDs for dual-channel imaging and superior Fe3+ ion sensing in biological systems NIR-triggered photooxygenation of α-terpinene with upconversion nanohybrids Catalytic amplification platform based on Fe2O3 nanoparticles decorated graphene nanocomposite for highly sensitive detection of rutin Back cover Optimization of plasmonic lens structure for maximum optical vortices induced on Weyl Semimetals Surface States
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1