A novel Nb–TiNb nanocomposite with single-phase BCC structure for bio-implant applications

IF 9.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Rare Metals Pub Date : 2024-07-17 DOI:10.1007/s12598-024-02884-6
Guang-Lei Liu, Wei Wang, Wen Ma, Shun Guo, Bao-Guo Shen, Hai-Xia Liu
{"title":"A novel Nb–TiNb nanocomposite with single-phase BCC structure for bio-implant applications","authors":"Guang-Lei Liu, Wei Wang, Wen Ma, Shun Guo, Bao-Guo Shen, Hai-Xia Liu","doi":"10.1007/s12598-024-02884-6","DOIUrl":null,"url":null,"abstract":"<p>In the present study, a body-centered-cubic (BCC) structured Nb/TiNb multilayer nanocomposite with high yield strength, which comprises a soft TiNb matrix and reinforced Nb nanowires, was designed and fabricated with the aim of elucidating the strengthening mechanism of Nb/TiNb multilayer nanocomposite by scanning electron microscope, transmission electron microscopy and in situ synchrotron X-ray diffraction. It is observed that the Nb/TiNb nanocomposite possesses a high yield strength of ~ 640 MPa, significantly exceeding that of the conventional single-phase β-type Ti alloys. Further experimental results indicate that as plastic deformation commenced in the TiNb matrix of Nb/TiNb nanocomposite, load transfer from the soft TiNb matrix into the reinforced Nb nanowires occurred, allowing for a high load-bearing stress contribution and a significant strength enhancement of Nb/TiNb nanocomposite. Meanwhile, the embedded Nb nanowires can effectively impede the propagation of dislocation in TiNb matrix, further strengthening the present nanocomposite. These findings elucidate the strengthening mechanism of Nb/TiNb nanocomposite through the above two combinations, providing a basis for the design and development of the high-strength composites with a single-phase BCC structure for biomedical applications.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"59 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12598-024-02884-6","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In the present study, a body-centered-cubic (BCC) structured Nb/TiNb multilayer nanocomposite with high yield strength, which comprises a soft TiNb matrix and reinforced Nb nanowires, was designed and fabricated with the aim of elucidating the strengthening mechanism of Nb/TiNb multilayer nanocomposite by scanning electron microscope, transmission electron microscopy and in situ synchrotron X-ray diffraction. It is observed that the Nb/TiNb nanocomposite possesses a high yield strength of ~ 640 MPa, significantly exceeding that of the conventional single-phase β-type Ti alloys. Further experimental results indicate that as plastic deformation commenced in the TiNb matrix of Nb/TiNb nanocomposite, load transfer from the soft TiNb matrix into the reinforced Nb nanowires occurred, allowing for a high load-bearing stress contribution and a significant strength enhancement of Nb/TiNb nanocomposite. Meanwhile, the embedded Nb nanowires can effectively impede the propagation of dislocation in TiNb matrix, further strengthening the present nanocomposite. These findings elucidate the strengthening mechanism of Nb/TiNb nanocomposite through the above two combinations, providing a basis for the design and development of the high-strength composites with a single-phase BCC structure for biomedical applications.

Graphical abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有单相 BCC 结构的新型 Nb-TiNb 纳米复合材料在生物植入物中的应用
本研究设计并制备了具有高屈服强度的体心立方(BCC)结构 Nb/TiNb 多层纳米复合材料,它由软 TiNb 基体和增强 Nb 纳米线组成,旨在通过扫描电子显微镜、透射电子显微镜和原位同步辐射 X 射线衍射阐明 Nb/TiNb 多层纳米复合材料的增强机理。结果表明,Nb/TiNb 纳米复合材料的屈服强度高达约 640 兆帕,大大超过了传统的单相 β 型 Ti 合金。进一步的实验结果表明,当 Nb/TiNb 纳米复合材料的 TiNb 基体开始发生塑性变形时,载荷从柔软的 TiNb 基体转移到增强的 Nb 纳米线上,从而使 Nb/TiNb 纳米复合材料具有较高的承载应力贡献并显著提高了强度。同时,嵌入的铌纳米线能有效阻碍钛铌基体中位错的传播,进一步增强了目前的纳米复合材料。这些发现通过上述两种组合阐明了 Nb/TiNb 纳米复合材料的增强机理,为设计和开发生物医学应用领域的单相 BCC 结构高强度复合材料提供了依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
期刊最新文献
Multi-scale inhomogeneity and anomalous mechanical response of nanoscale metallic glass pillar by cryogenic thermal cycling Preparation and electrocatalytic performance of novel-integrated Ni-Mo sulfide electrode materials for water splitting Tailoring thermal behavior and luminous performance in LuAG:Ce films via thickness control for high-power laser lighting applications Synergistic Cu single-atoms and clusters on tubular carbon nitride for efficient photocatalytic performances Enhanced thermoelectric performance in p-type AgBiSe2 through carrier concentration optimization and valence band modification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1