{"title":"Multiagent Detection System Based on Spatial Adaptive Feature Aggregation","authors":"Hongbo Wang;He Wang;Xin Zhang;Runze Ruan;Yueyun Wang;Yuyu Yin","doi":"10.1109/JSYST.2024.3423752","DOIUrl":null,"url":null,"abstract":"Detection systems based on computer vision play important roles in Large-Scale Multiagent Systems. In particular, it can automatically locate and identify key objects and enhance intelligent collaboration and coordination among multiple agents. However, classification and localization in object detection may produce inconsistent prediction results due to different learning focus. Therefore, we propose a Spatial Decoupling and Boundary Feature Aggregation Network (SDBA-Net) to achieve spatial decoupling and task alignment. SDBA-Net includes a spatially sensitive region-aware module (SSRM) and a boundary feature aggregation module (BFAM). SSRM predicts sensitive regions for each task while minimizing computational cost. BFAM extracts valuable boundary features within sensitive regions and aligns them with corresponding anchors. These two modules are combined to spatially decouple and align the features of two tasks. In addition, a significance dependency complementary module (SDCM) is introduced. It enables SSRM to quickly adjust the sensitive region of the classification task to the significant feature region. Experiments are conducted on a large-scale complex real-world dataset MS COCO (Lin et al., 2014). The results show that SDBA-Net achieves better results than the baselines. Using the ResNet-50 backbone, our method improves the average precision (AP) of the single-stage detector VFNet by 1.0 point (from 41.3 to 42.3). In particular, when using the Res2Net-101-DCN backbone, SDBA-Net achieves an AP of 51.8 on the MS COCO test-dev.","PeriodicalId":55017,"journal":{"name":"IEEE Systems Journal","volume":"18 4","pages":"1849-1859"},"PeriodicalIF":4.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Systems Journal","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10598835/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Detection systems based on computer vision play important roles in Large-Scale Multiagent Systems. In particular, it can automatically locate and identify key objects and enhance intelligent collaboration and coordination among multiple agents. However, classification and localization in object detection may produce inconsistent prediction results due to different learning focus. Therefore, we propose a Spatial Decoupling and Boundary Feature Aggregation Network (SDBA-Net) to achieve spatial decoupling and task alignment. SDBA-Net includes a spatially sensitive region-aware module (SSRM) and a boundary feature aggregation module (BFAM). SSRM predicts sensitive regions for each task while minimizing computational cost. BFAM extracts valuable boundary features within sensitive regions and aligns them with corresponding anchors. These two modules are combined to spatially decouple and align the features of two tasks. In addition, a significance dependency complementary module (SDCM) is introduced. It enables SSRM to quickly adjust the sensitive region of the classification task to the significant feature region. Experiments are conducted on a large-scale complex real-world dataset MS COCO (Lin et al., 2014). The results show that SDBA-Net achieves better results than the baselines. Using the ResNet-50 backbone, our method improves the average precision (AP) of the single-stage detector VFNet by 1.0 point (from 41.3 to 42.3). In particular, when using the Res2Net-101-DCN backbone, SDBA-Net achieves an AP of 51.8 on the MS COCO test-dev.
期刊介绍:
This publication provides a systems-level, focused forum for application-oriented manuscripts that address complex systems and system-of-systems of national and global significance. It intends to encourage and facilitate cooperation and interaction among IEEE Societies with systems-level and systems engineering interest, and to attract non-IEEE contributors and readers from around the globe. Our IEEE Systems Council job is to address issues in new ways that are not solvable in the domains of the existing IEEE or other societies or global organizations. These problems do not fit within traditional hierarchical boundaries. For example, disaster response such as that triggered by Hurricane Katrina, tsunamis, or current volcanic eruptions is not solvable by pure engineering solutions. We need to think about changing and enlarging the paradigm to include systems issues.