{"title":"Fairness Optimization for VLC Systems With Liquid Crystal-Based RIS-Enabled Transmitters","authors":"Xin-Yu Zhang;Jian Zhang;Qi Wu","doi":"10.1109/JPHOT.2024.3429187","DOIUrl":null,"url":null,"abstract":"The application of liquid crystal (LC)-based reconfigurable intelligent surface (RIS)-assisted transmitters in visible light communication (VLC) systems can guide and amplify the light emitted by light emitting diodes (LEDs). In this paper, we investigate the VLC system employing the RIS-assisted transmitter, where user fairness is maximized by optimizing the refractive index of the RIS module. To address the non-convex problem, we adopt the particle swarm optimization (PSO) algorithm. Simulation results illustrate that equipping the RIS-assisted transmitter in the system and using the proposed algorithm can significantly improve user fairness.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"16 4","pages":"1-8"},"PeriodicalIF":2.1000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10599796","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Journal","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10599796/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The application of liquid crystal (LC)-based reconfigurable intelligent surface (RIS)-assisted transmitters in visible light communication (VLC) systems can guide and amplify the light emitted by light emitting diodes (LEDs). In this paper, we investigate the VLC system employing the RIS-assisted transmitter, where user fairness is maximized by optimizing the refractive index of the RIS module. To address the non-convex problem, we adopt the particle swarm optimization (PSO) algorithm. Simulation results illustrate that equipping the RIS-assisted transmitter in the system and using the proposed algorithm can significantly improve user fairness.
期刊介绍:
Breakthroughs in the generation of light and in its control and utilization have given rise to the field of Photonics, a rapidly expanding area of science and technology with major technological and economic impact. Photonics integrates quantum electronics and optics to accelerate progress in the generation of novel photon sources and in their utilization in emerging applications at the micro and nano scales spanning from the far-infrared/THz to the x-ray region of the electromagnetic spectrum. IEEE Photonics Journal is an online-only journal dedicated to the rapid disclosure of top-quality peer-reviewed research at the forefront of all areas of photonics. Contributions addressing issues ranging from fundamental understanding to emerging technologies and applications are within the scope of the Journal. The Journal includes topics in: Photon sources from far infrared to X-rays, Photonics materials and engineered photonic structures, Integrated optics and optoelectronic, Ultrafast, attosecond, high field and short wavelength photonics, Biophotonics, including DNA photonics, Nanophotonics, Magnetophotonics, Fundamentals of light propagation and interaction; nonlinear effects, Optical data storage, Fiber optics and optical communications devices, systems, and technologies, Micro Opto Electro Mechanical Systems (MOEMS), Microwave photonics, Optical Sensors.