Passivity breakdown of high-strength 7068 aluminum alloy in borate buffer solutions containing chlorides

IF 2.6 4区 化学 Q3 ELECTROCHEMISTRY Journal of Solid State Electrochemistry Pub Date : 2024-07-17 DOI:10.1007/s10008-024-06010-5
Ankur Kumar, Gajanan P. Chaudhari
{"title":"Passivity breakdown of high-strength 7068 aluminum alloy in borate buffer solutions containing chlorides","authors":"Ankur Kumar,&nbsp;Gajanan P. Chaudhari","doi":"10.1007/s10008-024-06010-5","DOIUrl":null,"url":null,"abstract":"<div><p>Passivity breakdown mechanism of high-strength 7068 alloy is studied. Breakdown potential varied linearly with log a<sub>Cl</sub><sup>‒</sup>, pH, and square root of scan rate in potentiodynamic polarization tests. Mott-Schottky analysis showed that the dominant defect is cation vacancy. Passive layer characteristics like cation vacancy density and defect annihilation rate are determined. Critical cation vacancy density for pitting obtained from point defect model and the theoretical values are somewhat compatible. Chloride concentration of 0.01 M is too dilute to cause severe localized corrosion, whereas beyond 0.5 M, saturation is achieved in terms of breakdown potential and the cation vacancy density.\n</p></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Electrochemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10008-024-06010-5","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Passivity breakdown mechanism of high-strength 7068 alloy is studied. Breakdown potential varied linearly with log aCl, pH, and square root of scan rate in potentiodynamic polarization tests. Mott-Schottky analysis showed that the dominant defect is cation vacancy. Passive layer characteristics like cation vacancy density and defect annihilation rate are determined. Critical cation vacancy density for pitting obtained from point defect model and the theoretical values are somewhat compatible. Chloride concentration of 0.01 M is too dilute to cause severe localized corrosion, whereas beyond 0.5 M, saturation is achieved in terms of breakdown potential and the cation vacancy density.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高强度 7068 铝合金在含氯化物的硼酸盐缓冲溶液中的钝性破坏
研究了高强度 7068 合金的钝化击穿机理。在电位极化测试中,击穿电位与对数 aCl-、pH 值和扫描速率的平方根呈线性变化。莫特-肖特基分析表明,主要缺陷是阳离子空位。确定了阳离子空位密度和缺陷湮灭率等被动层特征。根据点缺陷模型得出的点蚀临界阳离子空位密度与理论值基本吻合。氯化物浓度为 0.01 M 时,由于过于稀释而导致严重的局部腐蚀,而超过 0.5 M 时,就击穿电位和阳离子空位密度而言,则达到了饱和状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.80
自引率
4.00%
发文量
227
审稿时长
4.1 months
期刊介绍: The Journal of Solid State Electrochemistry is devoted to all aspects of solid-state chemistry and solid-state physics in electrochemistry. The Journal of Solid State Electrochemistry publishes papers on all aspects of electrochemistry of solid compounds, including experimental and theoretical, basic and applied work. It equally publishes papers on the thermodynamics and kinetics of electrochemical reactions if at least one actively participating phase is solid. Also of interest are articles on the transport of ions and electrons in solids whenever these processes are relevant to electrochemical reactions and on the use of solid-state electrochemical reactions in the analysis of solids and their surfaces. The journal covers solid-state electrochemistry and focusses on the following fields: mechanisms of solid-state electrochemical reactions, semiconductor electrochemistry, electrochemical batteries, accumulators and fuel cells, electrochemical mineral leaching, galvanic metal plating, electrochemical potential memory devices, solid-state electrochemical sensors, ion and electron transport in solid materials and polymers, electrocatalysis, photoelectrochemistry, corrosion of solid materials, solid-state electroanalysis, electrochemical machining of materials, electrochromism and electrochromic devices, new electrochemical solid-state synthesis. The Journal of Solid State Electrochemistry makes the professional in research and industry aware of this swift progress and its importance for future developments and success in the above-mentioned fields.
期刊最新文献
Voltammetric determination of hydroxymethylfurfural in honey using screen-printed carbon electrodes: optimization and in-house validation tests Comparative analysis of pH sensing performance of nitrogen-doped ZnO on screen-printed silver and carbon electrodes Effect of electrodeposition of AuPt nanostructure thin films on the electrocatalytic activity of counter electrodes: DSSCs application Study of superhydrophobicity and corrosion resistance of electrodeposited Zn-Ni-HDTMS coating Screen-printed carbon electrode modified with AgNPs obtained via green synthesis for acetaminophen determination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1