{"title":"Passivity breakdown of high-strength 7068 aluminum alloy in borate buffer solutions containing chlorides","authors":"Ankur Kumar, Gajanan P. Chaudhari","doi":"10.1007/s10008-024-06010-5","DOIUrl":null,"url":null,"abstract":"<div><p>Passivity breakdown mechanism of high-strength 7068 alloy is studied. Breakdown potential varied linearly with log a<sub>Cl</sub><sup>‒</sup>, pH, and square root of scan rate in potentiodynamic polarization tests. Mott-Schottky analysis showed that the dominant defect is cation vacancy. Passive layer characteristics like cation vacancy density and defect annihilation rate are determined. Critical cation vacancy density for pitting obtained from point defect model and the theoretical values are somewhat compatible. Chloride concentration of 0.01 M is too dilute to cause severe localized corrosion, whereas beyond 0.5 M, saturation is achieved in terms of breakdown potential and the cation vacancy density.\n</p></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Electrochemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10008-024-06010-5","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Passivity breakdown mechanism of high-strength 7068 alloy is studied. Breakdown potential varied linearly with log aCl‒, pH, and square root of scan rate in potentiodynamic polarization tests. Mott-Schottky analysis showed that the dominant defect is cation vacancy. Passive layer characteristics like cation vacancy density and defect annihilation rate are determined. Critical cation vacancy density for pitting obtained from point defect model and the theoretical values are somewhat compatible. Chloride concentration of 0.01 M is too dilute to cause severe localized corrosion, whereas beyond 0.5 M, saturation is achieved in terms of breakdown potential and the cation vacancy density.
期刊介绍:
The Journal of Solid State Electrochemistry is devoted to all aspects of solid-state chemistry and solid-state physics in electrochemistry.
The Journal of Solid State Electrochemistry publishes papers on all aspects of electrochemistry of solid compounds, including experimental and theoretical, basic and applied work. It equally publishes papers on the thermodynamics and kinetics of electrochemical reactions if at least one actively participating phase is solid. Also of interest are articles on the transport of ions and electrons in solids whenever these processes are relevant to electrochemical reactions and on the use of solid-state electrochemical reactions in the analysis of solids and their surfaces.
The journal covers solid-state electrochemistry and focusses on the following fields: mechanisms of solid-state electrochemical reactions, semiconductor electrochemistry, electrochemical batteries, accumulators and fuel cells, electrochemical mineral leaching, galvanic metal plating, electrochemical potential memory devices, solid-state electrochemical sensors, ion and electron transport in solid materials and polymers, electrocatalysis, photoelectrochemistry, corrosion of solid materials, solid-state electroanalysis, electrochemical machining of materials, electrochromism and electrochromic devices, new electrochemical solid-state synthesis.
The Journal of Solid State Electrochemistry makes the professional in research and industry aware of this swift progress and its importance for future developments and success in the above-mentioned fields.