CellAgent: An LLM-driven Multi-Agent Framework for Automated Single-cell Data Analysis

Yihang Xiao, Jinyi Liu, Yan Zheng, Xiaohan Xie, Jianye Hao, Mingzhi Li, Ruitao Wang, Fei Ni, Yuxiao Li, Jintian Luo, Shaoqing Jiao, Jiajie Peng
{"title":"CellAgent: An LLM-driven Multi-Agent Framework for Automated Single-cell Data Analysis","authors":"Yihang Xiao, Jinyi Liu, Yan Zheng, Xiaohan Xie, Jianye Hao, Mingzhi Li, Ruitao Wang, Fei Ni, Yuxiao Li, Jintian Luo, Shaoqing Jiao, Jiajie Peng","doi":"arxiv-2407.09811","DOIUrl":null,"url":null,"abstract":"Single-cell RNA sequencing (scRNA-seq) data analysis is crucial for\nbiological research, as it enables the precise characterization of cellular\nheterogeneity. However, manual manipulation of various tools to achieve desired\noutcomes can be labor-intensive for researchers. To address this, we introduce\nCellAgent (http://cell.agent4science.cn/), an LLM-driven multi-agent framework,\nspecifically designed for the automatic processing and execution of scRNA-seq\ndata analysis tasks, providing high-quality results with no human intervention.\nFirstly, to adapt general LLMs to the biological field, CellAgent constructs\nLLM-driven biological expert roles - planner, executor, and evaluator - each\nwith specific responsibilities. Then, CellAgent introduces a hierarchical\ndecision-making mechanism to coordinate these biological experts, effectively\ndriving the planning and step-by-step execution of complex data analysis tasks.\nFurthermore, we propose a self-iterative optimization mechanism, enabling\nCellAgent to autonomously evaluate and optimize solutions, thereby guaranteeing\noutput quality. We evaluate CellAgent on a comprehensive benchmark dataset\nencompassing dozens of tissues and hundreds of distinct cell types. Evaluation\nresults consistently show that CellAgent effectively identifies the most\nsuitable tools and hyperparameters for single-cell analysis tasks, achieving\noptimal performance. This automated framework dramatically reduces the workload\nfor science data analyses, bringing us into the \"Agent for Science\" era.","PeriodicalId":501070,"journal":{"name":"arXiv - QuanBio - Genomics","volume":"106 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.09811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Single-cell RNA sequencing (scRNA-seq) data analysis is crucial for biological research, as it enables the precise characterization of cellular heterogeneity. However, manual manipulation of various tools to achieve desired outcomes can be labor-intensive for researchers. To address this, we introduce CellAgent (http://cell.agent4science.cn/), an LLM-driven multi-agent framework, specifically designed for the automatic processing and execution of scRNA-seq data analysis tasks, providing high-quality results with no human intervention. Firstly, to adapt general LLMs to the biological field, CellAgent constructs LLM-driven biological expert roles - planner, executor, and evaluator - each with specific responsibilities. Then, CellAgent introduces a hierarchical decision-making mechanism to coordinate these biological experts, effectively driving the planning and step-by-step execution of complex data analysis tasks. Furthermore, we propose a self-iterative optimization mechanism, enabling CellAgent to autonomously evaluate and optimize solutions, thereby guaranteeing output quality. We evaluate CellAgent on a comprehensive benchmark dataset encompassing dozens of tissues and hundreds of distinct cell types. Evaluation results consistently show that CellAgent effectively identifies the most suitable tools and hyperparameters for single-cell analysis tasks, achieving optimal performance. This automated framework dramatically reduces the workload for science data analyses, bringing us into the "Agent for Science" era.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CellAgent:用于单细胞数据自动分析的 LLM 驱动型多代理框架
单细胞 RNA 测序(scRNA-seq)数据分析对生物学研究至关重要,因为它能精确描述细胞的异质性。然而,手动操作各种工具以获得理想的结果可能会耗费研究人员大量的精力。为了解决这个问题,我们引入了细胞代理(CellAgent,http://cell.agent4science.cn/),这是一个 LLM 驱动的多代理框架,专门用于自动处理和执行 scRNA-seq 数据分析任务,无需人工干预即可提供高质量的结果。首先,为了使通用 LLM 适应生物领域,CellAgent 构建了 LLM 驱动的生物专家角色--规划者、执行者和评估者,每个角色都有特定的职责。然后,CellAgent 引入了一种分层决策机制来协调这些生物专家,从而有效地驱动复杂数据分析任务的规划和逐步执行。此外,我们还提出了一种自迭代优化机制,使 CellAgent 能够自主评估和优化解决方案,从而保证输出质量。我们在一个涵盖数十种组织和数百种不同细胞类型的综合基准数据集上对 CellAgent 进行了评估。评估结果一致表明,CellAgent 能有效识别最适合单细胞分析任务的工具和超参数,实现最佳性能。这一自动化框架大大减轻了科学数据分析的工作量,使我们进入了 "科学代理 "时代。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Allium Vegetables Intake and Digestive System Cancer Risk: A Study Based on Mendelian Randomization, Network Pharmacology and Molecular Docking wgatools: an ultrafast toolkit for manipulating whole genome alignments Selecting Differential Splicing Methods: Practical Considerations Advancements in colored k-mer sets: essentials for the curious Advancements in practical k-mer sets: essentials for the curious
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1