One-Pot Synthesis of Conductive Metal–Organic Framework@polypyrrole Hybrids with Enhanced Electromagnetic Wave Absorption Performance

Jiale Wu, Kang Wang, Song Ye, Qinglin Zhou, Shengqi Lu, Yuquan Laigao, Lai Jiang, Lanxin Wei, Aming Xie, Haibo Zeng, Weijin Li
{"title":"One-Pot Synthesis of Conductive Metal–Organic Framework@polypyrrole Hybrids with Enhanced Electromagnetic Wave Absorption Performance","authors":"Jiale Wu, Kang Wang, Song Ye, Qinglin Zhou, Shengqi Lu, Yuquan Laigao, Lai Jiang, Lanxin Wei, Aming Xie, Haibo Zeng, Weijin Li","doi":"10.1002/sstr.202400205","DOIUrl":null,"url":null,"abstract":"Rational heterostructure design can bring interfacial polarization relaxation to significantly enhance the electromagnetic wave (EMW) absorption performance. However, intelligently building a homogeneous heterostructure with superior EMW absorption properties remains a great challenge. Herein, a typical conductive metal–organic framework Cu<sub>3</sub>(HHTP)<sub>2</sub> (hexahydroxytriphenylene, HHTP) is delicately packed onto a polypyrrole (PPy) conductive polymer surface via a one-step in situ polymerization approach. Results show that Cu<sub>3</sub>(HHTP)<sub>2</sub> is well packed on the PPy surface to form an elegant Cu<sub>3</sub>(HHTP)<sub>2</sub>@PPy hybrids interfacial microstructure with a unique superiority regarding EMW absorption compared with single components of PPy and Cu<sub>3</sub>(HHTP)<sub>2</sub>. Interestingly, the interfacial microstructure of Cu<sub>3</sub>(HHTP)<sub>2</sub>@PPy hybrids can be tuned by adjusting the composition of the PPy and Cu<sub>3</sub>(HHTP)<sub>2</sub>, resulting in the improvement of impedance matching, conductive loss, and enhancement of interfacial polarization relaxation, endowing the optimization of the EM wave absorption properties of the Cu<sub>3</sub>(HHTP)<sub>2</sub>@PPy. The broad effective absorption bandwidth covers a range as broad as 6.68 GHz (11.00–17.68 GHz), which is higher than most reported metal-organic frameworks (MOFs) and conductive polymer-based EM absorbing materials. Herein, new insight for developing highly efficient EMW absorption materials through hybridized interfacial microstructure engineering is provided.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sstr.202400205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Rational heterostructure design can bring interfacial polarization relaxation to significantly enhance the electromagnetic wave (EMW) absorption performance. However, intelligently building a homogeneous heterostructure with superior EMW absorption properties remains a great challenge. Herein, a typical conductive metal–organic framework Cu3(HHTP)2 (hexahydroxytriphenylene, HHTP) is delicately packed onto a polypyrrole (PPy) conductive polymer surface via a one-step in situ polymerization approach. Results show that Cu3(HHTP)2 is well packed on the PPy surface to form an elegant Cu3(HHTP)2@PPy hybrids interfacial microstructure with a unique superiority regarding EMW absorption compared with single components of PPy and Cu3(HHTP)2. Interestingly, the interfacial microstructure of Cu3(HHTP)2@PPy hybrids can be tuned by adjusting the composition of the PPy and Cu3(HHTP)2, resulting in the improvement of impedance matching, conductive loss, and enhancement of interfacial polarization relaxation, endowing the optimization of the EM wave absorption properties of the Cu3(HHTP)2@PPy. The broad effective absorption bandwidth covers a range as broad as 6.68 GHz (11.00–17.68 GHz), which is higher than most reported metal-organic frameworks (MOFs) and conductive polymer-based EM absorbing materials. Herein, new insight for developing highly efficient EMW absorption materials through hybridized interfacial microstructure engineering is provided.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一锅合成具有增强电磁波吸收性能的导电金属有机框架@聚吡咯杂化物
合理的异质结构设计可以带来界面极化弛豫,从而显著提高电磁波(EMW)吸收性能。然而,如何智能地构建具有优异电磁波吸收性能的均相异质结构仍然是一个巨大的挑战。在本文中,通过一步原位聚合法将典型的导电金属有机框架 Cu3(HHTP)2(六羟基三亚苯,HHTP)微妙地填充到聚吡咯(PPy)导电聚合物表面。结果表明,Cu3(HHTP)2 被很好地包裹在 PPy 表面,形成了优雅的 Cu3(HHTP)2@PPy 混合物界面微观结构,与 PPy 和 Cu3(HHTP)2 的单一成分相比,它在电磁波吸收方面具有独特的优越性。有趣的是,Cu3(HHTP)2@PPy 杂化物的界面微结构可以通过调整 PPy 和 Cu3(HHTP)2 的成分来调节,从而改善阻抗匹配、导电损耗和增强界面极化弛豫,优化 Cu3(HHTP)2@PPy 的电磁波吸收特性。其宽广的有效吸收带宽范围可达 6.68 GHz(11.00-17.68 GHz),高于大多数已报道的金属有机框架(MOFs)和导电聚合物基电磁波吸收材料。本文为通过杂化界面微结构工程开发高效电磁波吸收材料提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
17.30
自引率
0.00%
发文量
0
期刊最新文献
Covalently Linked Pigment@TiO2 Hybrid Materials by One-Pot Solvothermal Synthesis Pressure-Enhanced Superconductivity and Structural Phase Transition in Layered Sn4P3 Unveiling Inequality of Atoms in Ultrasmall Pt Clusters: Oxygen Adsorption Limited to the Uppermost Atomic Layer Spatially Selective Ultraprecision Polishing and Cleaning by Collective Behavior of Micro Spinbots Inkjet-Printed Flexible and Transparent Ti3C2Tx/TiO2 Composite Films: A Strategy for Photoelectrically Controllable Photocatalytic Degradation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1