Ethanol-Based Solution Synthesis of a Functionalized Sulfide Solid Electrolyte: Investigation and Application

IF 4.7 4区 材料科学 Q2 ELECTROCHEMISTRY Batteries & Supercaps Pub Date : 2024-07-17 DOI:10.1002/batt.202400264
Yusuke Morino, Kentaro Takase, Kazuhiro Kamiguchi, Daisuke Ito
{"title":"Ethanol-Based Solution Synthesis of a Functionalized Sulfide Solid Electrolyte: Investigation and Application","authors":"Yusuke Morino,&nbsp;Kentaro Takase,&nbsp;Kazuhiro Kamiguchi,&nbsp;Daisuke Ito","doi":"10.1002/batt.202400264","DOIUrl":null,"url":null,"abstract":"<p>A sulfide solid electrolyte was synthesized using a solution-phase approach via the dissolution of Li<sub>3</sub>PS<sub>4</sub> in ethanol followed by heat treatment (90–300 °C). This method yielded an electrolyte with a maximum lithium-ion conductivity of 1.7×10<sup>−5</sup> S cm<sup>−1</sup> at 200 °C (down to 25 % of the pristine Li<sub>3</sub>PS<sub>4</sub>); however, increasing the heating temperature resulted in a significant decrease in conductivity. Nuclear magnetic resonance spectroscopy revealed the decomposition of the PS<sub>4</sub><sup>3−</sup> unit into P<sub>2</sub>S<sub>x</sub> dimers (P<sub>2</sub>S<sub>7</sub><sup>4−</sup> and P<sub>2</sub>S<sub>6</sub><sup>4−</sup>) at high temperatures. X-ray absorption spectroscopy further confirmed a core-shell structure in the solution-phase-synthesized electrolyte, with an enriched shell of oxygen-substituted P(S/O)<sub>x</sub> phases. Both the P<sub>2</sub>S<sub>x</sub> dimers in the core and the oxygen-rich shell may have contributed to the reduction in lithium-ion conductivity. Moreover, the oxygen-rich shell unexpectedly suppressed undesirable side reactions at the solid electrolyte/cathode interface. This study demonstrates the functionalization of solution-phase synthesis for sulfide solid electrolytes from ethanol, with a trade-off between conductivity and interface stability. Further optimizing the heat treatment process and shell engineering are promising avenues for enhancing the performance of all-solid-state batteries.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 10","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/batt.202400264","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

A sulfide solid electrolyte was synthesized using a solution-phase approach via the dissolution of Li3PS4 in ethanol followed by heat treatment (90–300 °C). This method yielded an electrolyte with a maximum lithium-ion conductivity of 1.7×10−5 S cm−1 at 200 °C (down to 25 % of the pristine Li3PS4); however, increasing the heating temperature resulted in a significant decrease in conductivity. Nuclear magnetic resonance spectroscopy revealed the decomposition of the PS43− unit into P2Sx dimers (P2S74− and P2S64−) at high temperatures. X-ray absorption spectroscopy further confirmed a core-shell structure in the solution-phase-synthesized electrolyte, with an enriched shell of oxygen-substituted P(S/O)x phases. Both the P2Sx dimers in the core and the oxygen-rich shell may have contributed to the reduction in lithium-ion conductivity. Moreover, the oxygen-rich shell unexpectedly suppressed undesirable side reactions at the solid electrolyte/cathode interface. This study demonstrates the functionalization of solution-phase synthesis for sulfide solid electrolytes from ethanol, with a trade-off between conductivity and interface stability. Further optimizing the heat treatment process and shell engineering are promising avenues for enhancing the performance of all-solid-state batteries.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
乙醇基溶液合成功能化硫化物固体电解质:研究与应用
通过将 Li3PS4 溶解在乙醇中,然后进行热处理(90-300 °C),利用溶液相方法合成了硫化物固体电解质。这种方法得到的电解质在 200 ℃ 时的最大锂离子电导率为 1.7 × 10-5 S cm-1(低至原始 Li3PS4 的 25%);然而,加热温度升高会导致电导率显著下降。核磁共振光谱显示 PS43- 单元在高温下分解成 P2Sx 二聚体(P2S74- 和 P2S64-)。X 射线吸收光谱进一步证实了溶液相合成电解质中的核壳结构,其外壳富含氧取代的 P(S/O)x 相。内核中的 P2Sx 二聚体和富氧外壳可能都是导致锂离子电导率降低的原因。此外,富氧外壳意外地抑制了固体电解质/阴极界面上的不良副反应。这项研究证明了乙醇硫化物固态电解质溶液相合成的功能化,并在导电性和界面稳定性之间做出了权衡。进一步优化热处理工艺和外壳工程是提高全固态电池性能的可行途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.60
自引率
5.30%
发文量
223
期刊介绍: Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.
期刊最新文献
Finite Element Simulation of NMC Particle Fracture During Calendering: A Route to Optimize Electrode Microstructures Mechanistic Insights into Sodium Niobate Surface Coating for Enhanced Cycling Performance of MnCuFe-Based Layered Oxides for Sodium-Ion Batteries The Solid Electrolyte Interphase Engineering for Enhanced Cycling Stability in Sodium-Ion Batteries: Strategies, Mechanistic Insights, and Performance Optimization Demonstrating the Performance of Aspartic-Acid Functionalized Naphthalene Diimide in a Near-Neutral Flow Battery Hierarchical Porosity Engineering of Birch-Derived Carbons via KOH Activation for High-Performance Aluminum Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1