Influence of Accumulated Radiation Effects on Single-Event Burnout in SiC MOSFETs

IF 1.9 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Nuclear Science Pub Date : 2024-07-16 DOI:10.1109/TNS.2024.3429172
Lei Wu;Shangli Dong;Xiaodong Xu;Yadong Wei;Zhongli Liu;Weiqi Li;Jianqun Yang;Xingji Li
{"title":"Influence of Accumulated Radiation Effects on Single-Event Burnout in SiC MOSFETs","authors":"Lei Wu;Shangli Dong;Xiaodong Xu;Yadong Wei;Zhongli Liu;Weiqi Li;Jianqun Yang;Xingji Li","doi":"10.1109/TNS.2024.3429172","DOIUrl":null,"url":null,"abstract":"The accumulated radiation effects of preirradiation from different radiation sources on single-event burnout (SEB) of silicon carbide metal-oxide-semiconductor field-effect transistors (SiC MOSFETs) were investigated. The displacement damage (DD) was introduced by preirradiation of silicon ions, and compared with the devices without preirradiation, it was found that it is had for SEB to occur in the devices with DD introduced after silicon ion irradiations. In contrast, for gamma ray preirradiation, it was found that SEB occurs more easily in the radiated devices by gamma ray. In addition, technology computer aided design (TCAD) is used to simulate the SEB of the devices, and the bulk defect increases the recombination rate of the devices and leads to the decrease of the current density. At the same voltage, the smaller the current density is, the lower the thermal effect will be, and SEB hardly occurs. The drain current and lattice temperature of the devices with oxide charges are higher, and SEB occurs more easily. The simulation results are reasonably consistent with the experimental results. This study provides a valuable reference for the method of SEB hardening.","PeriodicalId":13406,"journal":{"name":"IEEE Transactions on Nuclear Science","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nuclear Science","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10599501/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The accumulated radiation effects of preirradiation from different radiation sources on single-event burnout (SEB) of silicon carbide metal-oxide-semiconductor field-effect transistors (SiC MOSFETs) were investigated. The displacement damage (DD) was introduced by preirradiation of silicon ions, and compared with the devices without preirradiation, it was found that it is had for SEB to occur in the devices with DD introduced after silicon ion irradiations. In contrast, for gamma ray preirradiation, it was found that SEB occurs more easily in the radiated devices by gamma ray. In addition, technology computer aided design (TCAD) is used to simulate the SEB of the devices, and the bulk defect increases the recombination rate of the devices and leads to the decrease of the current density. At the same voltage, the smaller the current density is, the lower the thermal effect will be, and SEB hardly occurs. The drain current and lattice temperature of the devices with oxide charges are higher, and SEB occurs more easily. The simulation results are reasonably consistent with the experimental results. This study provides a valuable reference for the method of SEB hardening.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
累积辐射效应对 SiC MOSFET 单次烧毁的影响
研究了不同辐射源的预辐照对碳化硅金属氧化物半导体场效应晶体管(SiC MOSFET)单次烧毁(SEB)的累积辐射效应。通过硅离子预辐照引入了位移损伤(DD),与未进行预辐照的器件相比,发现硅离子辐照后引入 DD 的器件更容易发生 SEB。与此相反,在伽马射线预辐照下,受伽马射线辐射的器件更容易出现 SEB。此外,利用技术计算机辅助设计(TCAD)模拟了器件的 SEB,发现块状缺陷增加了器件的重组率,导致电流密度下降。在相同电压下,电流密度越小,热效应越低,SEB 几乎不会发生。带氧化物电荷的器件漏极电流和晶格温度较高,更容易出现 SEB。模拟结果与实验结果基本一致。这项研究为 SEB 硬化方法提供了有价值的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Nuclear Science
IEEE Transactions on Nuclear Science 工程技术-工程:电子与电气
CiteScore
3.70
自引率
27.80%
发文量
314
审稿时长
6.2 months
期刊介绍: The IEEE Transactions on Nuclear Science is a publication of the IEEE Nuclear and Plasma Sciences Society. It is viewed as the primary source of technical information in many of the areas it covers. As judged by JCR impact factor, TNS consistently ranks in the top five journals in the category of Nuclear Science & Technology. It has one of the higher immediacy indices, indicating that the information it publishes is viewed as timely, and has a relatively long citation half-life, indicating that the published information also is viewed as valuable for a number of years. The IEEE Transactions on Nuclear Science is published bimonthly. Its scope includes all aspects of the theory and application of nuclear science and engineering. It focuses on instrumentation for the detection and measurement of ionizing radiation; particle accelerators and their controls; nuclear medicine and its application; effects of radiation on materials, components, and systems; reactor instrumentation and controls; and measurement of radiation in space.
期刊最新文献
Table of Contents Affiliate Plan of the IEEE Nuclear and Plasma Sciences Society Introducing IEEE Collabratec IEEE Transactions on Nuclear Science publication information TechRxiv: Share Your Preprint Research with the World!
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1