Comprehensive analysis of the LysM protein family and functional characterization of the key LysM effector StLysM1, which modulates plant immunity in Setosphaeria turcica1
Xiaodong Gong, Dan Han, Lu Zhang, Guibo Yin, Junfang Yang, Hui Jia, Zhiyan Cao, Jingao Dong, Yuwei Liu, Shouqin Gu
{"title":"Comprehensive analysis of the LysM protein family and functional characterization of the key LysM effector StLysM1, which modulates plant immunity in Setosphaeria turcica1","authors":"Xiaodong Gong, Dan Han, Lu Zhang, Guibo Yin, Junfang Yang, Hui Jia, Zhiyan Cao, Jingao Dong, Yuwei Liu, Shouqin Gu","doi":"10.1016/j.jia.2024.06.006","DOIUrl":null,"url":null,"abstract":"LysM proteins contain the lysin domain (LysM), bind chitin and are found in various organisms including fungi. In phytopathogenic fungi, certain LysM proteins act as effectors to inhibit host immunity, thus increasing fungal virulence. However, our understanding of the LysM protein family in is limited. In this study, eight genes are identified and designated as to . The analysis of sequence features indicates that five proteins (StLysM1, StLysM2, StLysM5, StLysM6, and StLysM7) are potential effectors. Phylogenetic analysis suggests that the StLysMs are divided into fungal/bacterial and fungus-specific subclasses. Domain architecture analysis reveals that the five StLysM effectors exclusively harbor the LysM domain, whereas the other three StLysM proteins contain additional functional domains. Sequence conservation analysis shows that the fungal-specific LysM domain sequences share the GDxTC and WNP motifs as well as three highly conserved cysteine residues. Conversely, the LysM domain sequences from the bacterial/fungal branch have few conserved sites. Moreover, expression profiling analysis shows that the gene is significantly upregulated during the infection of maize. Yeast secretion assays and transient expression experiments demonstrate that StLysM1 is a secreted protein that can suppress BAX/INF1-induced programmed cell death in . Further functional analysis suggests that StLysM1 cannot interact with itself but it can bind chitin. The transient expression of inhibits the chitin-triggered plant immune response, increasing susceptibility to the phytopathogenic fungus in . This study reveals that the LySM protein family consists of eight members, highlighting the significance of StLysM1 as a vital effector in regulating plant immunity. The results provide insight into StLysMs and establish a foundation for understanding the roles of StLysM proteins in the pathogenic process of","PeriodicalId":16305,"journal":{"name":"Journal of Integrative Agriculture","volume":"49 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.jia.2024.06.006","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
LysM proteins contain the lysin domain (LysM), bind chitin and are found in various organisms including fungi. In phytopathogenic fungi, certain LysM proteins act as effectors to inhibit host immunity, thus increasing fungal virulence. However, our understanding of the LysM protein family in is limited. In this study, eight genes are identified and designated as to . The analysis of sequence features indicates that five proteins (StLysM1, StLysM2, StLysM5, StLysM6, and StLysM7) are potential effectors. Phylogenetic analysis suggests that the StLysMs are divided into fungal/bacterial and fungus-specific subclasses. Domain architecture analysis reveals that the five StLysM effectors exclusively harbor the LysM domain, whereas the other three StLysM proteins contain additional functional domains. Sequence conservation analysis shows that the fungal-specific LysM domain sequences share the GDxTC and WNP motifs as well as three highly conserved cysteine residues. Conversely, the LysM domain sequences from the bacterial/fungal branch have few conserved sites. Moreover, expression profiling analysis shows that the gene is significantly upregulated during the infection of maize. Yeast secretion assays and transient expression experiments demonstrate that StLysM1 is a secreted protein that can suppress BAX/INF1-induced programmed cell death in . Further functional analysis suggests that StLysM1 cannot interact with itself but it can bind chitin. The transient expression of inhibits the chitin-triggered plant immune response, increasing susceptibility to the phytopathogenic fungus in . This study reveals that the LySM protein family consists of eight members, highlighting the significance of StLysM1 as a vital effector in regulating plant immunity. The results provide insight into StLysMs and establish a foundation for understanding the roles of StLysM proteins in the pathogenic process of
期刊介绍:
Journal of Integrative Agriculture publishes manuscripts in the categories of Commentary, Review, Research Article, Letter and Short Communication, focusing on the core subjects: Crop Genetics & Breeding, Germplasm Resources, Physiology, Biochemistry, Cultivation, Tillage, Plant Protection, Animal Science, Veterinary Science, Soil and Fertilization, Irrigation, Plant Nutrition, Agro-Environment & Ecology, Bio-material and Bio-energy, Food Science, Agricultural Economics and Management, Agricultural Information Science.