Axisymmetric Flows with Swirl for Euler and Navier–Stokes Equations

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-07-15 DOI:10.1007/s00332-024-10064-0
Theodoros Katsaounis, Ioanna Mousikou, Athanasios E. Tzavaras
{"title":"Axisymmetric Flows with Swirl for Euler and Navier–Stokes Equations","authors":"Theodoros Katsaounis, Ioanna Mousikou, Athanasios E. Tzavaras","doi":"10.1007/s00332-024-10064-0","DOIUrl":null,"url":null,"abstract":"<p>We consider the incompressible axisymmetric Navier–Stokes equations with swirl as an idealized model for tornado-like flows. Assuming an infinite vortex line which interacts with a boundary surface resembles the tornado core, we look for stationary self-similar solutions of the axisymmetric Euler and axisymmetric Navier–Stokes equations. We are particularly interested in the connection of the two problems in the zero-viscosity limit. First, we construct a class of explicit stationary self-similar solutions for the axisymmetric Euler equations. Second, we consider the possibility of discontinuous solutions and prove that there do not exist self-similar stationary Euler solutions with slip discontinuity. This nonexistence result is extended to a class of flows where there is mass input or mass loss through the vortex core. Third, we consider solutions of the Euler equations as zero-viscosity limits of solutions to Navier–Stokes. Using techniques from the theory of Riemann problems for conservation laws, we prove that, under certain assumptions, stationary self-similar solutions of the axisymmetric Navier–Stokes equations converge to stationary self-similar solutions of the axisymmetric Euler equations as <span>\\(\\nu \\rightarrow 0\\)</span>. This allows to characterize the type of Euler solutions that arise via viscosity limits.\n</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00332-024-10064-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the incompressible axisymmetric Navier–Stokes equations with swirl as an idealized model for tornado-like flows. Assuming an infinite vortex line which interacts with a boundary surface resembles the tornado core, we look for stationary self-similar solutions of the axisymmetric Euler and axisymmetric Navier–Stokes equations. We are particularly interested in the connection of the two problems in the zero-viscosity limit. First, we construct a class of explicit stationary self-similar solutions for the axisymmetric Euler equations. Second, we consider the possibility of discontinuous solutions and prove that there do not exist self-similar stationary Euler solutions with slip discontinuity. This nonexistence result is extended to a class of flows where there is mass input or mass loss through the vortex core. Third, we consider solutions of the Euler equations as zero-viscosity limits of solutions to Navier–Stokes. Using techniques from the theory of Riemann problems for conservation laws, we prove that, under certain assumptions, stationary self-similar solutions of the axisymmetric Navier–Stokes equations converge to stationary self-similar solutions of the axisymmetric Euler equations as \(\nu \rightarrow 0\). This allows to characterize the type of Euler solutions that arise via viscosity limits.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
欧拉方程和纳维-斯托克斯方程中带有漩涡的轴对称流动
我们将带有漩涡的不可压缩轴对称纳维-斯托克斯方程视为龙卷风样流的理想化模型。假设与边界表面相互作用的无限漩涡线与龙卷风核心相似,我们寻找轴对称欧拉方程和轴对称纳维-斯托克斯方程的静止自相似解。我们尤其关注这两个问题在零粘度极限下的联系。首先,我们为轴对称欧拉方程构建了一类显式静止自相似解。其次,我们考虑了不连续解的可能性,并证明不存在滑移不连续的自相似静止欧拉解。这一不存在的结果被扩展到一类通过涡核有质量输入或质量损失的流动。第三,我们将欧拉方程的解视为纳维-斯托克斯解的零粘度极限。利用守恒定律黎曼问题理论的技术,我们证明了在某些假设条件下,轴对称纳维-斯托克斯方程的静态自相似解收敛于轴对称欧拉方程的静态自相似解(\nu \rightarrow 0\ )。这样就可以确定通过粘度极限产生的欧拉解的类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1