Theodoros Katsaounis, Ioanna Mousikou, Athanasios E. Tzavaras
{"title":"Axisymmetric Flows with Swirl for Euler and Navier–Stokes Equations","authors":"Theodoros Katsaounis, Ioanna Mousikou, Athanasios E. Tzavaras","doi":"10.1007/s00332-024-10064-0","DOIUrl":null,"url":null,"abstract":"<p>We consider the incompressible axisymmetric Navier–Stokes equations with swirl as an idealized model for tornado-like flows. Assuming an infinite vortex line which interacts with a boundary surface resembles the tornado core, we look for stationary self-similar solutions of the axisymmetric Euler and axisymmetric Navier–Stokes equations. We are particularly interested in the connection of the two problems in the zero-viscosity limit. First, we construct a class of explicit stationary self-similar solutions for the axisymmetric Euler equations. Second, we consider the possibility of discontinuous solutions and prove that there do not exist self-similar stationary Euler solutions with slip discontinuity. This nonexistence result is extended to a class of flows where there is mass input or mass loss through the vortex core. Third, we consider solutions of the Euler equations as zero-viscosity limits of solutions to Navier–Stokes. Using techniques from the theory of Riemann problems for conservation laws, we prove that, under certain assumptions, stationary self-similar solutions of the axisymmetric Navier–Stokes equations converge to stationary self-similar solutions of the axisymmetric Euler equations as <span>\\(\\nu \\rightarrow 0\\)</span>. This allows to characterize the type of Euler solutions that arise via viscosity limits.\n</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00332-024-10064-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the incompressible axisymmetric Navier–Stokes equations with swirl as an idealized model for tornado-like flows. Assuming an infinite vortex line which interacts with a boundary surface resembles the tornado core, we look for stationary self-similar solutions of the axisymmetric Euler and axisymmetric Navier–Stokes equations. We are particularly interested in the connection of the two problems in the zero-viscosity limit. First, we construct a class of explicit stationary self-similar solutions for the axisymmetric Euler equations. Second, we consider the possibility of discontinuous solutions and prove that there do not exist self-similar stationary Euler solutions with slip discontinuity. This nonexistence result is extended to a class of flows where there is mass input or mass loss through the vortex core. Third, we consider solutions of the Euler equations as zero-viscosity limits of solutions to Navier–Stokes. Using techniques from the theory of Riemann problems for conservation laws, we prove that, under certain assumptions, stationary self-similar solutions of the axisymmetric Navier–Stokes equations converge to stationary self-similar solutions of the axisymmetric Euler equations as \(\nu \rightarrow 0\). This allows to characterize the type of Euler solutions that arise via viscosity limits.