Variation of Nonlinearity Parameter and Acoustic Attenuation with Temperature in Few Semiconductors

IF 0.9 4区 物理与天体物理 Q4 ACOUSTICS Acoustical Physics Pub Date : 2024-07-15 DOI:10.1134/S1063771023601334
S. H. Bagade, P. A. Saudagar
{"title":"Variation of Nonlinearity Parameter and Acoustic Attenuation with Temperature in Few Semiconductors","authors":"S. H. Bagade,&nbsp;P. A. Saudagar","doi":"10.1134/S1063771023601334","DOIUrl":null,"url":null,"abstract":"<p>Acoustic attenuation coefficient per unit frequency square has been calculated for pure semiconductors like silicon and germanium, as well as for mixed semiconductors like gallium arsenide (III–V group) and tin telluride (IV–VI group), for longitudinal waves travelling along the <span>\\(\\left\\langle {100} \\right\\rangle \\)</span> crystallographic axis, within the temperature range 80–300 K. Second-order elastic constants of the materials are used to calculate the average Gruneisen parameter <span>\\(\\left\\langle {{{\\gamma }}_{i}^{j}} \\right\\rangle \\)</span>, using which the nonlinearity parameter <i>D</i><sub>L</sub> has been calculated for different temperatures. The knowledge of <i>D</i><sub>L</sub> is used for calculation of acoustic attenuation coefficient per unit frequency square due to phonon–phonon interaction <span>\\({{\\left[ {{{{\\alpha }} \\mathord{\\left/ {\\vphantom {{{\\alpha }} {{{f}^{2}}}}} \\right. \\kern-0em} {{{f}^{2}}}}} \\right]}_{{\\text{L}}}}\\)</span> and thermoelastic losses <span>\\({{\\left[ {{{{\\alpha }} \\mathord{\\left/ {\\vphantom {{{\\alpha }} {{{f}^{2}}}}} \\right. \\kern-0em} {{{f}^{2}}}}} \\right]}_{{{\\text{th}}}}}\\)</span>. Acoustic attenuations are found to be temperature dependent and increases with it. The magnitude of acoustic attenuation per unit frequency square due to phonon–phonon interactions is greater than that due to thermoelastic losses. The magnitude of acoustic attenuation for the investigated semiconductors is in the order Si &lt; Ge &lt; GaAs &lt; SnTe. It is observed that anharmonicity of the solids which give rise to phonon–phonon interaction is the dominant cause of acoustic attenuation of propagating waves. The acoustic attenuation of propagating waves is found to be proportional to the molecular weights of semiconductors<i>.</i></p>","PeriodicalId":455,"journal":{"name":"Acoustical Physics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acoustical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063771023601334","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Acoustic attenuation coefficient per unit frequency square has been calculated for pure semiconductors like silicon and germanium, as well as for mixed semiconductors like gallium arsenide (III–V group) and tin telluride (IV–VI group), for longitudinal waves travelling along the \(\left\langle {100} \right\rangle \) crystallographic axis, within the temperature range 80–300 K. Second-order elastic constants of the materials are used to calculate the average Gruneisen parameter \(\left\langle {{{\gamma }}_{i}^{j}} \right\rangle \), using which the nonlinearity parameter DL has been calculated for different temperatures. The knowledge of DL is used for calculation of acoustic attenuation coefficient per unit frequency square due to phonon–phonon interaction \({{\left[ {{{{\alpha }} \mathord{\left/ {\vphantom {{{\alpha }} {{{f}^{2}}}}} \right. \kern-0em} {{{f}^{2}}}}} \right]}_{{\text{L}}}}\) and thermoelastic losses \({{\left[ {{{{\alpha }} \mathord{\left/ {\vphantom {{{\alpha }} {{{f}^{2}}}}} \right. \kern-0em} {{{f}^{2}}}}} \right]}_{{{\text{th}}}}}\). Acoustic attenuations are found to be temperature dependent and increases with it. The magnitude of acoustic attenuation per unit frequency square due to phonon–phonon interactions is greater than that due to thermoelastic losses. The magnitude of acoustic attenuation for the investigated semiconductors is in the order Si < Ge < GaAs < SnTe. It is observed that anharmonicity of the solids which give rise to phonon–phonon interaction is the dominant cause of acoustic attenuation of propagating waves. The acoustic attenuation of propagating waves is found to be proportional to the molecular weights of semiconductors.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
少数半导体中的非线性参数和声衰减随温度的变化
摘要计算了硅和锗等纯半导体以及砷化镓(III-V 族)和碲化锡(IV-VI 族)等混合半导体在 80-300 K 温度范围内沿 \(\left\langle {{100} \right\rangle \)晶轴传播的纵波的单位频率平方声衰减系数。材料的二阶弹性常数用于计算平均格鲁尼森参数(\left\langle {{{\gamma }}_{{i}^{j}} \right\rangle \),利用该参数可以计算出不同温度下的非线性参数 DL。DL 的知识可用于计算由于声子-声子相互作用而产生的单位频率平方的声衰减系数({{\left[ {{{{\alpha }}\mathord{left/ {\vphantom {{{\alpha }}{{{f}^{2}}}}}\right.\kern-0em} {{f}^{2}}}}}\右]}_{{text/{L}}}}\ )和热弹性损失 ({{\left[ {{{{\alpha }}\mathord\{left/ {\vphantom {{{\alpha }}{{{f}^{2}}}}}\right.\kern-0em} {{f}^{2}}}}}\right]}_{{{\text{th}}}}}\).声学衰减与温度有关,并随温度升高而增加。声子-声子相互作用造成的单位频率平方的声衰减量大于热弹性损耗造成的声衰减量。所研究半导体的声衰减幅度依次为 Si < Ge < GaAs < SnTe。据观察,导致声子-声子相互作用的固体非谐波性是传播波声衰减的主要原因。研究发现,传播波的声衰减与半导体的分子量成正比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acoustical Physics
Acoustical Physics 物理-声学
CiteScore
1.60
自引率
50.00%
发文量
58
审稿时长
3.5 months
期刊介绍: Acoustical Physics is an international peer reviewed journal published with the participation of the Russian Academy of Sciences. It covers theoretical and experimental aspects of basic and applied acoustics: classical problems of linear acoustics and wave theory; nonlinear acoustics; physical acoustics; ocean acoustics and hydroacoustics; atmospheric and aeroacoustics; acoustics of structurally inhomogeneous solids; geological acoustics; acoustical ecology, noise and vibration; chamber acoustics, musical acoustics; acoustic signals processing, computer simulations; acoustics of living systems, biomedical acoustics; physical principles of engineering acoustics. The journal publishes critical reviews, original articles, short communications, and letters to the editor. It covers theoretical and experimental aspects of basic and applied acoustics. The journal welcomes manuscripts from all countries in the English or Russian language.
期刊最新文献
Peculiarities of Flexural Wave Propagation in a Notched Bar Interference of Echo Signals from Spherical Scatterers Located Near the Bottom Theoretical and Experimental Study of Diffraction by a Thin Cone Thermal Ablation of Biological Tissue by Sonicating Discrete Foci in a Specified Volume with a Single Wave Burst with Shocks On the Evolution of a System of Shock Waves Created by Engine Fan Blades
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1