The Dominant Effect of Electrolyte Concentration on Rechargeability of γ-MnO2 Cathodes in Alkaline Batteries

IF 3.1 4区 工程技术 Q2 ELECTROCHEMISTRY Journal of The Electrochemical Society Pub Date : 2024-07-14 DOI:10.1149/1945-7111/ad5976
Snehal Kolhekar, Michael Nyce and Sanjoy Banerjee
{"title":"The Dominant Effect of Electrolyte Concentration on Rechargeability of γ-MnO2 Cathodes in Alkaline Batteries","authors":"Snehal Kolhekar, Michael Nyce and Sanjoy Banerjee","doi":"10.1149/1945-7111/ad5976","DOIUrl":null,"url":null,"abstract":"Achieving high cycle life rechargeable γ-MnO2 cathodes in alkaline batteries face many challenges. Chief among these is the inability of the γ-MnO2 polymorph to retain its structural integrity when cycled to high utilization of its theoretical capacity ∼300 mAh g−1. In this paper, we investigate the root cause of failure of MnO2 cathodes under deep cycling in the one-electron discharge range and establish a strong link between capacity fade and the amount of birnessite formed. We uncover the underlying cause of failure by cycling industrial scale γ-MnO2 cathodes at various levels of theoretical capacity utilization (100%, 50%, and 30%) and in different KOH concentrations (37, 25, and 10 wt%). To determine materials evolution the cycled cathodes were dissected, characterized and analyzed using SEM, XRD, FIB/SEM, EIS, and XPS. Based on our findings, we propose that one major cause of failure of MnO2 cathodes stems from the solubility of Mn+3 formed during discharge which effectively results in destruction of the γ-MnO2 phase and amorphization of the cathode. The results show that the bulk of the γ-MnO2 phase is preserved only in ∼10 wt% KOH, which indicates the attractive range of KOH concentration for cycling of rechargeable γ-MnO2 cathodes.","PeriodicalId":17364,"journal":{"name":"Journal of The Electrochemical Society","volume":"40 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Electrochemical Society","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1149/1945-7111/ad5976","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Achieving high cycle life rechargeable γ-MnO2 cathodes in alkaline batteries face many challenges. Chief among these is the inability of the γ-MnO2 polymorph to retain its structural integrity when cycled to high utilization of its theoretical capacity ∼300 mAh g−1. In this paper, we investigate the root cause of failure of MnO2 cathodes under deep cycling in the one-electron discharge range and establish a strong link between capacity fade and the amount of birnessite formed. We uncover the underlying cause of failure by cycling industrial scale γ-MnO2 cathodes at various levels of theoretical capacity utilization (100%, 50%, and 30%) and in different KOH concentrations (37, 25, and 10 wt%). To determine materials evolution the cycled cathodes were dissected, characterized and analyzed using SEM, XRD, FIB/SEM, EIS, and XPS. Based on our findings, we propose that one major cause of failure of MnO2 cathodes stems from the solubility of Mn+3 formed during discharge which effectively results in destruction of the γ-MnO2 phase and amorphization of the cathode. The results show that the bulk of the γ-MnO2 phase is preserved only in ∼10 wt% KOH, which indicates the attractive range of KOH concentration for cycling of rechargeable γ-MnO2 cathodes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电解质浓度对碱性电池中 γ-MnO2 阴极充电能力的主要影响
在碱性电池中实现高循环寿命的可充电γ-二氧化锰阴极面临许多挑战。其中最主要的挑战是当γ-MnO2 多晶体的理论容量 ∼300 mAh g-1 循环到高利用率时,它无法保持结构的完整性。在本文中,我们研究了 MnO2 阴极在一电子放电范围内深度循环失效的根本原因,并确定了容量衰减与形成的桦辉石数量之间的密切联系。我们通过在不同理论容量利用率水平(100%、50% 和 30%)和不同 KOH 浓度(37、25 和 10 wt%)下循环使用工业规模的 γ-MnO2 阴极,揭示了失效的根本原因。为了确定材料的演变情况,我们对循环阴极进行了解剖,并使用 SEM、XRD、FIB/SEM、EIS 和 XPS 对其进行了表征和分析。根据我们的研究结果,我们提出 MnO2 阴极失效的一个主要原因是放电过程中形成的 Mn+3 的溶解性,这有效地导致了 γ-MnO2 相的破坏和阴极的非晶化。结果表明,只有在 ∼10 wt% 的 KOH 中才能保留大部分 γ-MnO2 相,这表明 KOH 浓度对可充电 γ-MnO2 阴极的循环具有吸引力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
12.80%
发文量
1369
审稿时长
1.5 months
期刊介绍: The Journal of The Electrochemical Society (JES) is the leader in the field of solid-state and electrochemical science and technology. This peer-reviewed journal publishes an average of 450 pages of 70 articles each month. Articles are posted online, with a monthly paper edition following electronic publication. The ECS membership benefits package includes access to the electronic edition of this journal.
期刊最新文献
Electrochemical HOCl Production Modeling for an Electrochemical Catheter. Comprehensive Analysis of Commercial Sodium-Ion Batteries: Structural and Electrochemical Insights Electrochemical Behaviour of Nickel(II)-Rhenium(VII) And Electrodeposition of Nickel-Rhenium Alloy from Choline Chloride - Urea Deep Eutectic Solvent Optimization of Post-Annealing Temperature of RF Magnetron-Sputtered ZnO Thin Films for Enhancing Performances of UV Photodetectors Spatially Resolved Assessment and Analysis of Al-Zn, Mg, and Mg/Al-Zn Metal-Rich Primers Applied to AA 7075-T651 in Full Immersion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1