T. Sathish, Sivamani Selvaraju, N. Ahalya, Ashok Kumar, Abhishek Agarwal, Chander Prakash, N. Senthilkumar, V. Jagadeesha Angadi, Vinay Kumar, Abdullah A. Al-Kahtani, Elham Khalili, Hesam Kamyab, Mohammad Yusuf
{"title":"Exploring waste-derived catalysts for sustainable biodiesel production: a path towards renewable energy","authors":"T. Sathish, Sivamani Selvaraju, N. Ahalya, Ashok Kumar, Abhishek Agarwal, Chander Prakash, N. Senthilkumar, V. Jagadeesha Angadi, Vinay Kumar, Abdullah A. Al-Kahtani, Elham Khalili, Hesam Kamyab, Mohammad Yusuf","doi":"10.1007/s42823-024-00773-7","DOIUrl":null,"url":null,"abstract":"<p>Fossil fuels have a high energy density, meaning they contain a significant amount of energy per unit of volume, making them efficient for energy production and transport. Biodiesel is especially becoming a fossil fuel alternative and a key part of renewable energy. Several types of waste from homes, markets, street vendors, and other industrial places were collected and transesterified with Ni-doped ZnO nanoparticles for this study. These included castor oil, coffee grounds, eggshells, vegetable oil, fruit peels, and soybean oil. The Ni-doped ZnO’s were then calcined at 800 °C. The maximum conversion rate found in converting fruit peel waste into biodiesel is about 87.6%, and it was 89.6% when the oil-to-methanal ratio was about 1:2 and the reaction time was 140 min. This is the maximum biodiesel production compared to other wastes. Moreover, using vegetable oil with nanocatalyst, the maximum biodiesel production rate of about 90.58% was recorded with 15% catalyst loading, which is the maximum biodiesel production compared with the other wastes with nanocatalyst. Furthermore, at 75 °C and a concentration of catalyst of about 15% the maximum biodiesel production obtained by using castor oil is about 92.8%. It has the highest biodiesel yield compared with the yield recorded from other waste. The catalyst also demonstrated great stability and reusability for the synthesis of biodiesel. Using waste fruit peels with Ni-doped ZnO helps to progress low-cost and ecologically friendly catalyst for sustainable biodiesel production.</p>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"36 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s42823-024-00773-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Fossil fuels have a high energy density, meaning they contain a significant amount of energy per unit of volume, making them efficient for energy production and transport. Biodiesel is especially becoming a fossil fuel alternative and a key part of renewable energy. Several types of waste from homes, markets, street vendors, and other industrial places were collected and transesterified with Ni-doped ZnO nanoparticles for this study. These included castor oil, coffee grounds, eggshells, vegetable oil, fruit peels, and soybean oil. The Ni-doped ZnO’s were then calcined at 800 °C. The maximum conversion rate found in converting fruit peel waste into biodiesel is about 87.6%, and it was 89.6% when the oil-to-methanal ratio was about 1:2 and the reaction time was 140 min. This is the maximum biodiesel production compared to other wastes. Moreover, using vegetable oil with nanocatalyst, the maximum biodiesel production rate of about 90.58% was recorded with 15% catalyst loading, which is the maximum biodiesel production compared with the other wastes with nanocatalyst. Furthermore, at 75 °C and a concentration of catalyst of about 15% the maximum biodiesel production obtained by using castor oil is about 92.8%. It has the highest biodiesel yield compared with the yield recorded from other waste. The catalyst also demonstrated great stability and reusability for the synthesis of biodiesel. Using waste fruit peels with Ni-doped ZnO helps to progress low-cost and ecologically friendly catalyst for sustainable biodiesel production.
期刊介绍:
Carbon Letters aims to be a comprehensive journal with complete coverage of carbon materials and carbon-rich molecules. These materials range from, but are not limited to, diamond and graphite through chars, semicokes, mesophase substances, carbon fibers, carbon nanotubes, graphenes, carbon blacks, activated carbons, pyrolytic carbons, glass-like carbons, etc. Papers on the secondary production of new carbon and composite materials from the above mentioned various carbons are within the scope of the journal. Papers on organic substances, including coals, will be considered only if the research has close relation to the resulting carbon materials. Carbon Letters also seeks to keep abreast of new developments in their specialist fields and to unite in finding alternative energy solutions to current issues such as the greenhouse effect and the depletion of the ozone layer. The renewable energy basics, energy storage and conversion, solar energy, wind energy, water energy, nuclear energy, biomass energy, hydrogen production technology, and other clean energy technologies are also within the scope of the journal. Carbon Letters invites original reports of fundamental research in all branches of the theory and practice of carbon science and technology.