Component leaching of water oxidation electrocatalysts

IF 22.7 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Infomat Pub Date : 2024-07-16 DOI:10.1002/inf2.12609
Gao Chen, Yanping Zhu, Sixuan She, Zezhou Lin, Hainan Sun, Haitao Huang
{"title":"Component leaching of water oxidation electrocatalysts","authors":"Gao Chen, Yanping Zhu, Sixuan She, Zezhou Lin, Hainan Sun, Haitao Huang","doi":"10.1002/inf2.12609","DOIUrl":null,"url":null,"abstract":"Most electrocatalysts are known to experience structural change during the oxygen evolution reaction (OER) process. Considerable endeavors have been dedicated thus far to comprehending the catalytic process and uncovering the underlying mechanism. During the dynamic evolution of catalyst structure, component leaching of electrocatalysts is the most common phenomenon. This article offers a concise overview of recent findings and developments related to the leaching phenomena in the OER process in terms of fundamental understanding of leaching, advanced characterization techniques used to investigate leaching, leaching of inactive components, and leaching of active components. Leaching behaviors and the induced effects in various kinds of OER catalysts are discussed, progress in manipulating leaching amount/degree toward a tunable surface evolution is spotlighted, and finally, three representative types of structure transformations induced by leaching metastable species in OER condition are proposed. By understanding the process of component leaching in the OER, it will provide more guidance for the rational design of superior electrocatalysts.","PeriodicalId":48538,"journal":{"name":"Infomat","volume":null,"pages":null},"PeriodicalIF":22.7000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infomat","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/inf2.12609","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Most electrocatalysts are known to experience structural change during the oxygen evolution reaction (OER) process. Considerable endeavors have been dedicated thus far to comprehending the catalytic process and uncovering the underlying mechanism. During the dynamic evolution of catalyst structure, component leaching of electrocatalysts is the most common phenomenon. This article offers a concise overview of recent findings and developments related to the leaching phenomena in the OER process in terms of fundamental understanding of leaching, advanced characterization techniques used to investigate leaching, leaching of inactive components, and leaching of active components. Leaching behaviors and the induced effects in various kinds of OER catalysts are discussed, progress in manipulating leaching amount/degree toward a tunable surface evolution is spotlighted, and finally, three representative types of structure transformations induced by leaching metastable species in OER condition are proposed. By understanding the process of component leaching in the OER, it will provide more guidance for the rational design of superior electrocatalysts.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
水氧化电催化剂的成分沥滤
众所周知,大多数电催化剂在氧进化反应(OER)过程中都会发生结构变化。迄今为止,人们已经为理解催化过程和揭示其潜在机理做出了大量努力。在催化剂结构的动态演化过程中,电催化剂的组分浸出是最常见的现象。本文从浸出的基本认识、用于研究浸出的先进表征技术、非活性成分的浸出和活性成分的浸出等方面,简要概述了与 OER 过程中浸出现象有关的最新发现和发展。讨论了各种 OER 催化剂中的浸出行为和诱导效应,重点介绍了在操纵浸出量/浸出度以实现可调表面演化方面取得的进展,最后提出了在 OER 条件下,浸出可迁移物种诱导的三种代表性结构转变类型。通过了解 OER 中的组分浸出过程,将为合理设计优异的电催化剂提供更多指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Infomat
Infomat MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
37.70
自引率
3.10%
发文量
111
审稿时长
8 weeks
期刊介绍: InfoMat, an interdisciplinary and open-access journal, caters to the growing scientific interest in novel materials with unique electrical, optical, and magnetic properties, focusing on their applications in the rapid advancement of information technology. The journal serves as a high-quality platform for researchers across diverse scientific areas to share their findings, critical opinions, and foster collaboration between the materials science and information technology communities.
期刊最新文献
Continuous synthesis of metal oxide-supported high-entropy alloy nanoparticles with remarkable durability and catalytic activity in the hydrogen reduction reaction Bifunctional self-segregated electrolyte realizing high-performance zinc-iodine batteries Computing imaging in shortwave infrared bands enabled by MoTe2/Si 2D-3D heterojunction-based photodiode Cover Image Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1