Hg2+ removal characteristics of a strain of mercury-tolerant bacteria screened from heavy metal-contaminated soil in a molybdenum-lead mining area.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-07-19 DOI:10.1007/s10123-024-00559-x
Ao-Bo Tan, Hui Wang, Jiang-Tao Ji, Han-Yue Yao, Hong-Yan Tang
{"title":"Hg<sup>2+</sup> removal characteristics of a strain of mercury-tolerant bacteria screened from heavy metal-contaminated soil in a molybdenum-lead mining area.","authors":"Ao-Bo Tan, Hui Wang, Jiang-Tao Ji, Han-Yue Yao, Hong-Yan Tang","doi":"10.1007/s10123-024-00559-x","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, the mercury-tolerant strain LTC105 was isolated from a contaminated soil sample collected from a molybdenum-lead mine in Luanchuan County, Henan Province, China. The strain was shown to be highly resistant to mercury, with a minimum inhibitory concentration (MIC) of 32 mg·L<sup>-1</sup>. After a 24-h incubation in LB medium with 10 mg·L<sup>-1</sup> Hg<sup>2+</sup>, the removal, adsorption, and volatilization rates of Hg<sup>2+</sup> were 97.37%, 7.3%, and 90.07%, respectively, indicating that the strain had significant influence on mercury removal. Based on the results of Fourier infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), the investigation revealed that the primary function of LTC105 was to encourage the volatilization of mercury. The LTC105 strain also showed strong tolerance to heavy metals such as Mn<sup>2+</sup>, Zn<sup>2+</sup>, and Pb<sup>2+</sup>. According to the results of the soil incubation test, the total mercury removal rate of the LTC105 inoculation increased by 16.34% when the initial mercury concentration of the soil was 100 mg·L<sup>-1</sup> and by 62.28% when the initial mercury concentration of the soil was 50 mg·kg<sup>-1</sup>. These findings indicate that LTC105 has certain bioremediation ability for Hg-contaminated soil and is a suitable candidate strain for microbial remediation of heavy metal-contaminated soil in mining areas.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10123-024-00559-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the mercury-tolerant strain LTC105 was isolated from a contaminated soil sample collected from a molybdenum-lead mine in Luanchuan County, Henan Province, China. The strain was shown to be highly resistant to mercury, with a minimum inhibitory concentration (MIC) of 32 mg·L-1. After a 24-h incubation in LB medium with 10 mg·L-1 Hg2+, the removal, adsorption, and volatilization rates of Hg2+ were 97.37%, 7.3%, and 90.07%, respectively, indicating that the strain had significant influence on mercury removal. Based on the results of Fourier infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), the investigation revealed that the primary function of LTC105 was to encourage the volatilization of mercury. The LTC105 strain also showed strong tolerance to heavy metals such as Mn2+, Zn2+, and Pb2+. According to the results of the soil incubation test, the total mercury removal rate of the LTC105 inoculation increased by 16.34% when the initial mercury concentration of the soil was 100 mg·L-1 and by 62.28% when the initial mercury concentration of the soil was 50 mg·kg-1. These findings indicate that LTC105 has certain bioremediation ability for Hg-contaminated soil and is a suitable candidate strain for microbial remediation of heavy metal-contaminated soil in mining areas.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从钼铅矿区受重金属污染的土壤中筛选出的一株耐汞细菌的 Hg2+ 清除特性。
本研究从中国河南省栾川县钼铅矿污染土壤样本中分离出耐汞菌株 LTC105。结果表明,该菌株对汞具有高度抗性,最低抑菌浓度(MIC)为 32 mg-L-1。在含有 10 mg-L-1 Hg2+ 的 LB 培养基中培养 24 小时后,该菌株对 Hg2+ 的去除率、吸附率和挥发率分别为 97.37%、7.3% 和 90.07%,表明该菌株对汞的去除有显著影响。根据傅立叶红外光谱(FTIR)和扫描电子显微镜(SEM)的结果,研究发现 LTC105 的主要功能是促进汞的挥发。LTC105 菌株对 Mn2+、Zn2+ 和 Pb2+ 等重金属也表现出很强的耐受性。土壤培养试验结果表明,当土壤初始汞浓度为 100 mg-L-1 时,接种 LTC105 的总汞去除率提高了 16.34%;当土壤初始汞浓度为 50 mg-kg-1 时,接种 LTC105 的总汞去除率提高了 62.28%。这些研究结果表明,LTC105 对汞污染土壤具有一定的生物修复能力,是矿区重金属污染土壤微生物修复的合适候选菌株。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1