Shaan Manawar, Erica Myrick, Peter Awad, Victor Hung, Cassidy Hinton, Keith Kenter, Karen Bovid, Yong Li
{"title":"Use of allograft bone matrix in clinical orthopedics.","authors":"Shaan Manawar, Erica Myrick, Peter Awad, Victor Hung, Cassidy Hinton, Keith Kenter, Karen Bovid, Yong Li","doi":"10.1080/17460751.2024.2353473","DOIUrl":null,"url":null,"abstract":"<p><p>Clinical orthopedics continuously aims to improve methods for bone formation. Clinical applications where bone formation is necessary include critical long bone defects in orthopedic trauma or tumor patients. Though some biomaterials combined with autologous stem cells significantly improve bone repair, critical-size damages are still challenged with the suitable implantation of biomaterials and donor cell survival. Extracellular matrix (ECM) is the fundamental structure in tissues that can nest and nourish resident cells as well as support specific functions of the tissue type. ECM also plays a role in cell signaling to promote bone growth, healing and turnover. In the last decade, the use of bone-derived ECMs or ECM-similar biomaterials have been widely investigated, including decellularized and demineralized bone ECM. In this article, we reviewed the current productions and applications of decellularized and demineralized bone matrices. We also introduce the current study of whole limb decellularization and recellularization.</p>","PeriodicalId":21043,"journal":{"name":"Regenerative medicine","volume":" ","pages":"247-256"},"PeriodicalIF":2.4000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11321266/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/17460751.2024.2353473","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/19 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Clinical orthopedics continuously aims to improve methods for bone formation. Clinical applications where bone formation is necessary include critical long bone defects in orthopedic trauma or tumor patients. Though some biomaterials combined with autologous stem cells significantly improve bone repair, critical-size damages are still challenged with the suitable implantation of biomaterials and donor cell survival. Extracellular matrix (ECM) is the fundamental structure in tissues that can nest and nourish resident cells as well as support specific functions of the tissue type. ECM also plays a role in cell signaling to promote bone growth, healing and turnover. In the last decade, the use of bone-derived ECMs or ECM-similar biomaterials have been widely investigated, including decellularized and demineralized bone ECM. In this article, we reviewed the current productions and applications of decellularized and demineralized bone matrices. We also introduce the current study of whole limb decellularization and recellularization.
期刊介绍:
Regenerative medicine replaces or regenerates human cells, tissue or organs, to restore or establish normal function*. Since 2006, Regenerative Medicine has been at the forefront of publishing the very best papers and reviews covering the entire regenerative medicine sector. The journal focusses on the entire spectrum of approaches to regenerative medicine, including small molecule drugs, biologics, biomaterials and tissue engineering, and cell and gene therapies – it’s all about regeneration and not a specific platform technology. The journal’s scope encompasses all aspects of the sector ranging from discovery research, through to clinical development, through to commercialization. Regenerative Medicine uniquely supports this important area of biomedical science and healthcare by providing a peer-reviewed journal totally committed to publishing the very best regenerative medicine research, clinical translation and commercialization.
Regenerative Medicine provides a specialist forum to address the important challenges and advances in regenerative medicine, delivering this essential information in concise, clear and attractive article formats – vital to a rapidly growing, multidisciplinary and increasingly time-constrained community.
Despite substantial developments in our knowledge and understanding of regeneration, the field is still in its infancy. However, progress is accelerating. The next few decades will see the discovery and development of transformative therapies for patients, and in some cases, even cures. Regenerative Medicine will continue to provide a critical overview of these advances as they progress, undergo clinical trials, and eventually become mainstream medicine.