{"title":"Examining the role of stimulus complexity in item and associative memory.","authors":"Ricarda Endemann, Siri-Maria Kamp","doi":"10.3758/s13421-024-01590-z","DOIUrl":null,"url":null,"abstract":"<p><p>Episodic memory comprises memory for individual information units (item memory) and for the connections among them (associative memory). In two experiments using an object pair learning task, we examined the effect of visual stimulus complexity on memory encoding and retrieval mechanisms and on item and associative memory performance. Subjects encoded pairs of black monochrome object images (low complexity, LC condition) or color photographs of objects (high complexity, HC condition) via interactive imagery, and subsequently item and associative recognition were tested. In Experiment 1, event-related potentials (ERPs) revealed an enhanced frontal N2 during encoding and an enhanced late posterior negativity (LPN) during item recognition in the HC condition, suggesting that memory traces containing visually more complex objects elicited a stronger effort in reconstructing the past episode. Item memory was consistently superior in the HC compared to the LC condition. Associative memory was either statistically unaffected by complexity (Experiment 1) or improved (Experiment 2) in the HC condition, speaking against a tradeoff between resources allocated to item versus associative memory, and hence contradicting results of some prior studies. In Experiment 2, in both young and older adults, both item and associative memory benefitted from stimulus complexity, such that the magnitude of the age-related associative deficit was not influenced by stimulus complexity. Together, these results suggest that if familiar objects are presented in a form that exhibits a higher visual complexity, which may support semantic processing, complexity can benefit both item and associative memory. Stimulus properties that enhance item memory can scaffold associative memory in this situation.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3758/s13421-024-01590-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Episodic memory comprises memory for individual information units (item memory) and for the connections among them (associative memory). In two experiments using an object pair learning task, we examined the effect of visual stimulus complexity on memory encoding and retrieval mechanisms and on item and associative memory performance. Subjects encoded pairs of black monochrome object images (low complexity, LC condition) or color photographs of objects (high complexity, HC condition) via interactive imagery, and subsequently item and associative recognition were tested. In Experiment 1, event-related potentials (ERPs) revealed an enhanced frontal N2 during encoding and an enhanced late posterior negativity (LPN) during item recognition in the HC condition, suggesting that memory traces containing visually more complex objects elicited a stronger effort in reconstructing the past episode. Item memory was consistently superior in the HC compared to the LC condition. Associative memory was either statistically unaffected by complexity (Experiment 1) or improved (Experiment 2) in the HC condition, speaking against a tradeoff between resources allocated to item versus associative memory, and hence contradicting results of some prior studies. In Experiment 2, in both young and older adults, both item and associative memory benefitted from stimulus complexity, such that the magnitude of the age-related associative deficit was not influenced by stimulus complexity. Together, these results suggest that if familiar objects are presented in a form that exhibits a higher visual complexity, which may support semantic processing, complexity can benefit both item and associative memory. Stimulus properties that enhance item memory can scaffold associative memory in this situation.