Perrine Verdys, Javier Rey Barroso, Adeline Girel, Joseph Vermeil, Martin Bergert, Thibaut Sanchez, Arnaud Métais, Thomas Mangeat, Elisabeth Bellard, Claire Bigot, Catherine Astarie-Dequeker, Arnaud Labrousse, Jean-Philippe Girard, Isabelle Maridonneau-Parini, Christel Vérollet, Frédéric Lagarrigue, Alba Diz-Muñoz, Julien Heuvingh, Matthieu Piel, Olivia du Roure, Véronique Le Cabec, Sébastien Carréno, Renaud Poincloux
{"title":"Ezrin, radixin, and moesin are dispensable for macrophage migration and cellular cortex mechanics.","authors":"Perrine Verdys, Javier Rey Barroso, Adeline Girel, Joseph Vermeil, Martin Bergert, Thibaut Sanchez, Arnaud Métais, Thomas Mangeat, Elisabeth Bellard, Claire Bigot, Catherine Astarie-Dequeker, Arnaud Labrousse, Jean-Philippe Girard, Isabelle Maridonneau-Parini, Christel Vérollet, Frédéric Lagarrigue, Alba Diz-Muñoz, Julien Heuvingh, Matthieu Piel, Olivia du Roure, Véronique Le Cabec, Sébastien Carréno, Renaud Poincloux","doi":"10.1038/s44318-024-00173-7","DOIUrl":null,"url":null,"abstract":"<p><p>The cellular cortex provides crucial mechanical support and plays critical roles during cell division and migration. The proteins of the ERM family, comprised of ezrin, radixin, and moesin, are central to these processes by linking the plasma membrane to the actin cytoskeleton. To investigate the contributions of the ERM proteins to leukocyte migration, we generated single and triple ERM knockout macrophages. Surprisingly, we found that even in the absence of ERM proteins, macrophages still form the different actin structures promoting cell migration, such as filopodia, lamellipodia, podosomes, and ruffles. Furthermore, we discovered that, unlike every other cell type previously investigated, the single or triple knockout of ERM proteins does not affect macrophage migration in diverse contexts. Finally, we demonstrated that the loss of ERMs in macrophages does not affect the mechanical properties of their cortex. These findings challenge the notion that ERMs are universally essential for cortex mechanics and cell migration and support the notion that the macrophage cortex may have diverged from that of other cells to allow for their uniquely adaptive cortical plasticity.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":"4822-4845"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11535515/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44318-024-00173-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The cellular cortex provides crucial mechanical support and plays critical roles during cell division and migration. The proteins of the ERM family, comprised of ezrin, radixin, and moesin, are central to these processes by linking the plasma membrane to the actin cytoskeleton. To investigate the contributions of the ERM proteins to leukocyte migration, we generated single and triple ERM knockout macrophages. Surprisingly, we found that even in the absence of ERM proteins, macrophages still form the different actin structures promoting cell migration, such as filopodia, lamellipodia, podosomes, and ruffles. Furthermore, we discovered that, unlike every other cell type previously investigated, the single or triple knockout of ERM proteins does not affect macrophage migration in diverse contexts. Finally, we demonstrated that the loss of ERMs in macrophages does not affect the mechanical properties of their cortex. These findings challenge the notion that ERMs are universally essential for cortex mechanics and cell migration and support the notion that the macrophage cortex may have diverged from that of other cells to allow for their uniquely adaptive cortical plasticity.
期刊介绍:
The EMBO Journal has stood as EMBO's flagship publication since its inception in 1982. Renowned for its international reputation in quality and originality, the journal spans all facets of molecular biology. It serves as a platform for papers elucidating original research of broad general interest in molecular and cell biology, with a distinct focus on molecular mechanisms and physiological relevance.
With a commitment to promoting articles reporting novel findings of broad biological significance, The EMBO Journal stands as a key contributor to advancing the field of molecular biology.