Network depth affects inference of gene sets from bacterial transcriptomes using denoising autoencoders.

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Bioinformatics advances Pub Date : 2024-05-08 eCollection Date: 2024-01-01 DOI:10.1093/bioadv/vbae066
Willow Kion-Crosby, Lars Barquist
{"title":"Network depth affects inference of gene sets from bacterial transcriptomes using denoising autoencoders.","authors":"Willow Kion-Crosby, Lars Barquist","doi":"10.1093/bioadv/vbae066","DOIUrl":null,"url":null,"abstract":"<p><strong>Summary: </strong>The increasing number of publicly available bacterial gene expression data sets provides an unprecedented resource for the study of gene regulation in diverse conditions, but emphasizes the need for self-supervised methods for the automated generation of new hypotheses. One approach for inferring coordinated regulation from bacterial expression data is through neural networks known as denoising autoencoders (DAEs) which encode large datasets in a reduced bottleneck layer. We have generalized this application of DAEs to include deep networks and explore the effects of network architecture on gene set inference using deep learning. We developed a DAE-based pipeline to extract gene sets from transcriptomic data in <i>Escherichia coli</i>, validate our method by comparing inferred gene sets with known pathways, and have used this pipeline to explore how the choice of network architecture impacts gene set recovery. We find that increasing network depth leads the DAEs to explain gene expression in terms of fewer, more concisely defined gene sets, and that adjusting the width results in a tradeoff between generalizability and biological inference. Finally, leveraging our understanding of the impact of DAE architecture, we apply our pipeline to an independent uropathogenic <i>E.coli</i> dataset to identify genes uniquely induced during human colonization.</p><p><strong>Availability and implementation: </strong>https://github.com/BarquistLab/DAE_architecture_exploration.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"4 1","pages":"vbae066"},"PeriodicalIF":2.4000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11256956/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Summary: The increasing number of publicly available bacterial gene expression data sets provides an unprecedented resource for the study of gene regulation in diverse conditions, but emphasizes the need for self-supervised methods for the automated generation of new hypotheses. One approach for inferring coordinated regulation from bacterial expression data is through neural networks known as denoising autoencoders (DAEs) which encode large datasets in a reduced bottleneck layer. We have generalized this application of DAEs to include deep networks and explore the effects of network architecture on gene set inference using deep learning. We developed a DAE-based pipeline to extract gene sets from transcriptomic data in Escherichia coli, validate our method by comparing inferred gene sets with known pathways, and have used this pipeline to explore how the choice of network architecture impacts gene set recovery. We find that increasing network depth leads the DAEs to explain gene expression in terms of fewer, more concisely defined gene sets, and that adjusting the width results in a tradeoff between generalizability and biological inference. Finally, leveraging our understanding of the impact of DAE architecture, we apply our pipeline to an independent uropathogenic E.coli dataset to identify genes uniquely induced during human colonization.

Availability and implementation: https://github.com/BarquistLab/DAE_architecture_exploration.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
网络深度对使用去噪自编码器从细菌转录组推断基因组的影响
摘要:公开的细菌基因表达数据集越来越多,为研究不同条件下的基因调控提供了前所未有的资源,但同时也强调了自动生成新假设的自监督方法的必要性。从细菌表达数据中推断协调调控的一种方法是通过被称为去噪自动编码器(DAE)的神经网络,它能在减少瓶颈层的情况下对大型数据集进行编码。我们将 DAE 的这一应用推广到了深度网络,并利用深度学习探索了网络架构对基因组推断的影响。我们开发了一个基于 DAE 的管道,从大肠杆菌的转录组数据中提取基因组,通过比较推断出的基因组与已知通路来验证我们的方法,并利用这个管道来探索网络架构的选择如何影响基因组的恢复。我们发现,增加网络深度会导致 DAE 用更少、定义更简洁的基因组来解释基因表达,而调整宽度则会在通用性和生物推断之间做出权衡。最后,利用我们对 DAE 架构影响的理解,我们将我们的管道应用于一个独立的尿路致病性大肠杆菌数据集,以确定人类定植过程中独特诱导的基因。可用性和实现:https://github.com/BarquistLab/DAE_architecture_exploration。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
期刊最新文献
The combined focal loss and dice loss function improves the segmentation of beta-sheets in medium-resolution cryo-electron-microscopy density maps. MultiOmicsIntegrator: a nextflow pipeline for integrated omics analyses. mxfda: a comprehensive toolkit for functional data analysis of single-cell spatial data. Conditional flux balance analysis toolbox for python: application to research metabolism in cyclic environments. LUKB: preparing local UK Biobank data for analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1