Electrospun collagen/chitosan composite fibrous membranes for accelerating wound healing.

Zhan Zhang, Xinzhe Zhao, Ziyu Song, Lu Wang, Jing Gao
{"title":"Electrospun collagen/chitosan composite fibrous membranes for accelerating wound healing.","authors":"Zhan Zhang, Xinzhe Zhao, Ziyu Song, Lu Wang, Jing Gao","doi":"10.1088/1748-605X/ad6545","DOIUrl":null,"url":null,"abstract":"<p><p>The protein-polysaccharide nanofibers have attracted intensive attention in promoting wound healing, due to their components and nanoscale fibrous structure that mimics the native extracellular matrix (ECM). For the full-thickness wounds, in addition to promoting healing, hemostatic property and antibacterial activity are also of critical importance. However, currently, protein-polysaccharide-based nanofiber membranes exhibit poor mechanical properties, lack inherent hemostatic and antibacterial capabilities, as well as the ability to promote tissue repair. In this study, we developed composited membranes, which were composed of collagen (Col) and chitosan (Chs), through solvent alteration and post-processing, the membranes showed enhanced stability under physiological conditions, proper hydrophilic performance and improved mechanical property. Appropriated porosity and water vapor transmission rate, which benefit to wound healing, were detected among all the membranes except for Col membrane. Aimed at wound dressing, hemocompatibility, antibacterial activity and cell proliferation of the electrospun membranes were evaluated. The results indicated that the Col/Chs composited membranes exhibited superior blood clotting capacity, and the membranes with Chs exceeding 60% possessed sufficient antibacterial activity. Moreover, compared with Chs nanofibers, significant increase in cell grow was detected in Col/Chs (1:3) membrane. Taken together, the electrospun membrane with multiple properties favorable to wound healing, superior blood coagulation, sufficient antibacterial performance and promoting cell proliferation property make it favorable candidate for full-thickness skin wound healing.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-605X/ad6545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The protein-polysaccharide nanofibers have attracted intensive attention in promoting wound healing, due to their components and nanoscale fibrous structure that mimics the native extracellular matrix (ECM). For the full-thickness wounds, in addition to promoting healing, hemostatic property and antibacterial activity are also of critical importance. However, currently, protein-polysaccharide-based nanofiber membranes exhibit poor mechanical properties, lack inherent hemostatic and antibacterial capabilities, as well as the ability to promote tissue repair. In this study, we developed composited membranes, which were composed of collagen (Col) and chitosan (Chs), through solvent alteration and post-processing, the membranes showed enhanced stability under physiological conditions, proper hydrophilic performance and improved mechanical property. Appropriated porosity and water vapor transmission rate, which benefit to wound healing, were detected among all the membranes except for Col membrane. Aimed at wound dressing, hemocompatibility, antibacterial activity and cell proliferation of the electrospun membranes were evaluated. The results indicated that the Col/Chs composited membranes exhibited superior blood clotting capacity, and the membranes with Chs exceeding 60% possessed sufficient antibacterial activity. Moreover, compared with Chs nanofibers, significant increase in cell grow was detected in Col/Chs (1:3) membrane. Taken together, the electrospun membrane with multiple properties favorable to wound healing, superior blood coagulation, sufficient antibacterial performance and promoting cell proliferation property make it favorable candidate for full-thickness skin wound healing.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于加速伤口愈合的电纺胶原蛋白/壳聚糖复合纤维膜。
由于蛋白质多糖纳米纤维的成分和纳米级纤维结构可模仿原生细胞外基质(ECM),因此在促进伤口愈合方面引起了广泛关注。对于全厚伤口而言,除了促进愈合外,止血性能和抗菌活性也至关重要。然而,目前基于蛋白质多糖的纳米纤维膜的机械性能较差,缺乏固有的止血和抗菌能力,以及促进组织修复的能力。在这项研究中,我们开发了由胶原蛋白(Col)和壳聚糖(Chs)组成的复合膜,通过改变溶剂和后处理,膜在生理条件下表现出更强的稳定性、适当的亲水性能和更好的机械性能。除 Col 膜外,其他膜都具有适当的孔隙率和水蒸气透过率,有利于伤口愈合。针对伤口敷料,对电纺丝膜的血液相容性、抗菌活性和细胞增殖进行了评估。结果表明,Col/Chs 复合膜具有优异的凝血能力,Chs 超过 60% 的膜具有足够的抗菌活性。此外,与 Chs 纳米纤维相比,Col/Chs(1:3)膜的细胞生长率显著提高。综上所述,电纺丝膜具有有利于伤口愈合的多种特性,其优异的血液凝固性、足够的抗菌性能和促进细胞增殖的特性使其成为全厚皮肤伤口愈合的理想候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generalisation of the yield stress measurement in three point bending collapse tests: application to 3D printed flax fibre reinforced hydrogels. Hyaluronic acid modified Cu/Mn-doped metal-organic framework nanocatalyst for chemodynamic therapy. Sustainable bioinspired materials for regenerative medicine: balancing toxicology, environmental impact, and ethical considerations. MPS blockade with liposomes controls pharmacokinetics of nanoparticles in a size-dependent manner. Thermo-responsible PNIPAM-grafted polystyrene microspheres for mesenchymal stem cells culture and detachment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1