Osteogenesis promotion on MC3T3 by micro-area potential difference (MAPD) on titanium alloy.

Yanchun Xie, Junfan Chen, Shan Fu, Hailong Yu, Anwu Xuan, Yongcun Wei, Yi Lian, Lei Yang, Erlin Zhang
{"title":"Osteogenesis promotion on MC3T3 by micro-area potential difference (MAPD) on titanium alloy.","authors":"Yanchun Xie, Junfan Chen, Shan Fu, Hailong Yu, Anwu Xuan, Yongcun Wei, Yi Lian, Lei Yang, Erlin Zhang","doi":"10.1088/1748-605X/ad98d7","DOIUrl":null,"url":null,"abstract":"<p><p>The ability of osseointegration of implants is an important factor in ensuring the long-term stability of bone implants in their recipient sites. In this paper, Ti-M titanium alloys with different surface micro-area potential difference (MAPD) were prepared and the adhesion, proliferation, spreading, and differentiation behavior of osteoblasts (MC3T3) on the surface of Ti-M alloy were investigated in detail to reveal the effect of MAPD on cell compatibility and osteogenic differentiation. The results showed that the alloy with high MAPD facilitated bone differentiation, demonstrating that MAPD significantly enhanced the alkaline phosphatase activity and mineralization ability of osteoblasts, and upregulated the expression of osteogenic differentiation-related factors. It is suggested that it might be a strategy to promote the surface bioactivity of titanium alloy by adjusting the surface MAPD.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-605X/ad98d7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The ability of osseointegration of implants is an important factor in ensuring the long-term stability of bone implants in their recipient sites. In this paper, Ti-M titanium alloys with different surface micro-area potential difference (MAPD) were prepared and the adhesion, proliferation, spreading, and differentiation behavior of osteoblasts (MC3T3) on the surface of Ti-M alloy were investigated in detail to reveal the effect of MAPD on cell compatibility and osteogenic differentiation. The results showed that the alloy with high MAPD facilitated bone differentiation, demonstrating that MAPD significantly enhanced the alkaline phosphatase activity and mineralization ability of osteoblasts, and upregulated the expression of osteogenic differentiation-related factors. It is suggested that it might be a strategy to promote the surface bioactivity of titanium alloy by adjusting the surface MAPD.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Osteogenesis promotion on MC3T3 by micro-area potential difference (MAPD) on titanium alloy. An aligned pattern sponge based on gelatin for rapid hemostasis. 3D printedβ-TCP scaffolds loaded with SVVYGLR peptide for promoting revascularization and osteoinduction. Biomaterials for bone tissue engineering: achievements to date and future directions. Inhibition of hepatocellular carcinoma progression by methotrexate-modified pH-sensitive sorafenib and Schisandrin B micelles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1