On Krylov subspace methods for skew-symmetric and shifted skew-symmetric linear systems

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED Advances in Computational Mathematics Pub Date : 2024-07-19 DOI:10.1007/s10444-024-10178-9
Kui Du, Jia-Jun Fan, Xiao-Hui Sun, Fang Wang, Ya-Lan Zhang
{"title":"On Krylov subspace methods for skew-symmetric and shifted skew-symmetric linear systems","authors":"Kui Du,&nbsp;Jia-Jun Fan,&nbsp;Xiao-Hui Sun,&nbsp;Fang Wang,&nbsp;Ya-Lan Zhang","doi":"10.1007/s10444-024-10178-9","DOIUrl":null,"url":null,"abstract":"<div><p>Krylov subspace methods for solving linear systems of equations involving skew-symmetric matrices have gained recent attention. Numerical equivalences among Krylov subspace methods for nonsingular skew-symmetric linear systems have been given in Greif et al. [SIAM J. Matrix Anal. Appl., 37 (2016), pp. 1071–1087]. In this work, we extend the results of Greif et al. to singular skew-symmetric linear systems. In addition, we systematically study three Krylov subspace methods (called S<span>\\(^3\\)</span>CG, S<span>\\(^3\\)</span>MR, and S<span>\\(^3\\)</span>LQ) for solving shifted skew-symmetric linear systems. They all are based on Lanczos triangularization for skew-symmetric matrices and correspond to CG, MINRES, and SYMMLQ for solving symmetric linear systems, respectively. To the best of our knowledge, this is the first work that studies S<span>\\(^3\\)</span>LQ. We give some new theoretical results on S<span>\\(^3\\)</span>CG, S<span>\\(^3\\)</span>MR, and S<span>\\(^3\\)</span>LQ. We also provide relations among the three methods and those based on Golub–Kahan bidiagonalization and Saunders–Simon–Yip tridiagonalization. Numerical examples are given to illustrate our theoretical findings.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 4","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-024-10178-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Krylov subspace methods for solving linear systems of equations involving skew-symmetric matrices have gained recent attention. Numerical equivalences among Krylov subspace methods for nonsingular skew-symmetric linear systems have been given in Greif et al. [SIAM J. Matrix Anal. Appl., 37 (2016), pp. 1071–1087]. In this work, we extend the results of Greif et al. to singular skew-symmetric linear systems. In addition, we systematically study three Krylov subspace methods (called S\(^3\)CG, S\(^3\)MR, and S\(^3\)LQ) for solving shifted skew-symmetric linear systems. They all are based on Lanczos triangularization for skew-symmetric matrices and correspond to CG, MINRES, and SYMMLQ for solving symmetric linear systems, respectively. To the best of our knowledge, this is the first work that studies S\(^3\)LQ. We give some new theoretical results on S\(^3\)CG, S\(^3\)MR, and S\(^3\)LQ. We also provide relations among the three methods and those based on Golub–Kahan bidiagonalization and Saunders–Simon–Yip tridiagonalization. Numerical examples are given to illustrate our theoretical findings.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于偏斜对称和移位偏斜对称线性系统的克雷洛夫子空间方法
用于求解涉及偏斜对称矩阵的线性方程组的 Krylov 子空间方法近年来备受关注。Greif 等人[SIAM J. Matrix Anal. Appl., 37 (2016), pp.]在这项工作中,我们将 Greif 等人的结果扩展到奇异偏斜对称线性系统。此外,我们还系统地研究了三种克雷洛夫子空间方法(称为 S\(^3\)CG, S\(^3\)MR 和 S\(^3\)LQ ),用于求解移位偏斜对称线性系统。它们都是基于偏斜对称矩阵的 Lanczos 三角化,分别对应于求解对称线性系统的 CG、MINRES 和 SYMMLQ。据我们所知,这是第一部研究 S\(^3\)LQ 的著作。我们给出了关于 S\(^3\)CG, S\(^3\)MR 和 S\(^3\)LQ 的一些新的理论结果。我们还提供了这三种方法与基于 Golub-Kahan 二对角化和 Saunders-Simon-Yip 三对角化的方法之间的关系。我们还给出了数值实例来说明我们的理论发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.00
自引率
5.90%
发文量
68
审稿时长
3 months
期刊介绍: Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis. This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.
期刊最新文献
Parametric model order reduction for a wildland fire model via the shifted POD-based deep learning method A scaling fractional asymptotical regularization method for linear inverse problems A difference finite element method based on nonconforming finite element methods for 3D elliptic problems An all-frequency stable integral system for Maxwell’s equations in 3-D penetrable media: continuous and discrete model analysis A reduced-order model for advection-dominated problems based on the Radon Cumulative Distribution Transform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1