Small Stomates and Xylem Vessels Associated With Freeze Tolerance in Winter Barley

IF 3.7 2区 农林科学 Q1 AGRONOMY Journal of Agronomy and Crop Science Pub Date : 2024-07-18 DOI:10.1111/jac.12737
Xi Liang, Gongshe Hu, Lisa McDougall, Jason Werth, Rui Yang, Jingya Yang, Chris Evans, Kathy Satterfield
{"title":"Small Stomates and Xylem Vessels Associated With Freeze Tolerance in Winter Barley","authors":"Xi Liang,&nbsp;Gongshe Hu,&nbsp;Lisa McDougall,&nbsp;Jason Werth,&nbsp;Rui Yang,&nbsp;Jingya Yang,&nbsp;Chris Evans,&nbsp;Kathy Satterfield","doi":"10.1111/jac.12737","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Freeze tolerance is a complex agronomic trait that is difficult to evaluate in the field because of year-to-year variation in weather. Discovering plant characteristics closely related to freeze tolerance would enable more effective selection for this important trait. To explore possible physiological mechanisms and search for useful characteristics related to freeze tolerance in winter barley, we conducted field and growth chamber experiments with seven freeze-tolerant and seven freeze-susceptible genotypes that exhibited contrasting winter survival in preliminary field screenings. In a 2-year field experiment, malondialdehyde, proline and water-soluble carbohydrate concentrations were measured during cold acclimation and deacclimation to investigate differences in osmoregulation and membrane stability between freeze-tolerant and freeze-sensitive genotypes. All parameters varied by sampling year, and significant differences between freeze tolerance groups were found mainly during cold deacclimation in the spring. In growth chamber experiments, the size of xylem vessels and stomates was measured with and without cold acclimation. Freeze-tolerant genotypes had smaller xylem vessels and stomates than freeze-sensitive genotypes with and without cold acclimation, and small stomatal length was associated with a small xylem vessel area. Thus, it may be possible to improve freeze tolerance in winter barley by selecting smaller xylem and stomate cells. This study also validated germplasms of winter barley with differential freeze tolerance for future projects on breeding for improving winter hardiness and on plant physiology and genetics in response to freezing stress.</p>\n </div>","PeriodicalId":14864,"journal":{"name":"Journal of Agronomy and Crop Science","volume":"210 4","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agronomy and Crop Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jac.12737","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Freeze tolerance is a complex agronomic trait that is difficult to evaluate in the field because of year-to-year variation in weather. Discovering plant characteristics closely related to freeze tolerance would enable more effective selection for this important trait. To explore possible physiological mechanisms and search for useful characteristics related to freeze tolerance in winter barley, we conducted field and growth chamber experiments with seven freeze-tolerant and seven freeze-susceptible genotypes that exhibited contrasting winter survival in preliminary field screenings. In a 2-year field experiment, malondialdehyde, proline and water-soluble carbohydrate concentrations were measured during cold acclimation and deacclimation to investigate differences in osmoregulation and membrane stability between freeze-tolerant and freeze-sensitive genotypes. All parameters varied by sampling year, and significant differences between freeze tolerance groups were found mainly during cold deacclimation in the spring. In growth chamber experiments, the size of xylem vessels and stomates was measured with and without cold acclimation. Freeze-tolerant genotypes had smaller xylem vessels and stomates than freeze-sensitive genotypes with and without cold acclimation, and small stomatal length was associated with a small xylem vessel area. Thus, it may be possible to improve freeze tolerance in winter barley by selecting smaller xylem and stomate cells. This study also validated germplasms of winter barley with differential freeze tolerance for future projects on breeding for improving winter hardiness and on plant physiology and genetics in response to freezing stress.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
与冬大麦耐冻性相关的小气孔和木质部血管
耐冻性是一个复杂的农艺性状,由于天气年复一年的变化,很难在田间进行评估。发现与抗冻性密切相关的植物特征将有助于更有效地选择这一重要性状。为了探索可能的生理机制并寻找与冬大麦耐冻性相关的有用特性,我们用 7 个耐冻基因型和 7 个感冻基因型进行了田间和生长室实验,这些基因型在初步的田间筛选中表现出截然不同的冬季存活率。在为期两年的田间试验中,我们测量了耐寒和脱寒期间丙二醛、脯氨酸和水溶性碳水化合物的浓度,以研究耐冻基因型和感冻基因型在渗透调节和膜稳定性方面的差异。所有参数都因采样年份而异,耐冻组间的显著差异主要出现在春季低温脱钙期。在生长室实验中,对木质部血管和气孔的大小进行了测量。耐冻基因型的木质部血管和气孔都小于对冷冻敏感的基因型,而气孔长度小与木质部血管面积小有关。因此,有可能通过选择较小的木质部和气孔细胞来提高冬大麦的抗冻性。这项研究还验证了具有不同抗冻性的冬大麦种质,为今后提高冬大麦耐寒性的育种项目以及应对冷冻胁迫的植物生理和遗传学项目提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Agronomy and Crop Science
Journal of Agronomy and Crop Science 农林科学-农艺学
CiteScore
8.20
自引率
5.70%
发文量
54
审稿时长
7.8 months
期刊介绍: The effects of stress on crop production of agricultural cultivated plants will grow to paramount importance in the 21st century, and the Journal of Agronomy and Crop Science aims to assist in understanding these challenges. In this context, stress refers to extreme conditions under which crops and forages grow. The journal publishes original papers and reviews on the general and special science of abiotic plant stress. Specific topics include: drought, including water-use efficiency, such as salinity, alkaline and acidic stress, extreme temperatures since heat, cold and chilling stress limit the cultivation of crops, flooding and oxidative stress, and means of restricting them. Special attention is on research which have the topic of narrowing the yield gap. The Journal will give preference to field research and studies on plant stress highlighting these subsections. Particular regard is given to application-oriented basic research and applied research. The application of the scientific principles of agricultural crop experimentation is an essential prerequisite for the publication. Studies based on field experiments must show that they have been repeated (at least three times) on the same organism or have been conducted on several different varieties.
期刊最新文献
Assessing Salinity, Drought and High Temperature Stress in Maize (Zea mays L.) and Wheat (Triticum aestivum L.) Varieties: Theoretical Combination as Multifactorial Stress Evaluating Drought Tolerance and Yield Stability of Sorghum Genotypes for Sustainable Agriculture in Sohag, Egypt Dry Spell Dynamics Impacting the Productivity of Rainfed Crops Over the Semi-Arid Regions of South-East India Effect of Shading on Leaf Anatomical Structure, Photosynthesis Characteristics and Chlorophyll Fluorescence of Soybean (Glycine max) Comparative Analysis of Phytochemicals and Gene Expression in Soybean (Glycine max) Under Acute Moderated and Severe Elevated Ozone: Unravelling the Role of Antioxidant Defence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1