Evolutionary Zn Ion Storage Mechanism of Hierarchical Nanotubular Spinel FeV2O4 for Zinc–Metal Full Cells

IF 18.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Energy Storage Materials Pub Date : 2024-07-17 DOI:10.1016/j.ensm.2024.103637
{"title":"Evolutionary Zn Ion Storage Mechanism of Hierarchical Nanotubular Spinel FeV2O4 for Zinc–Metal Full Cells","authors":"","doi":"10.1016/j.ensm.2024.103637","DOIUrl":null,"url":null,"abstract":"<p>A fundamental understanding about the evolution of energy storage mechanism by the structure reconstruction during initial cycling is crucial in establishing their correlation with the unprecedented electrochemical performance of electrodes. Herein, we demonstrate evolutionary zinc (Zn) ion storage mechanism and kinetics of the hierarchical nanotubular FeV<sub>2</sub>O<sub>4</sub> (FeV<sub>2</sub>O<sub>4</sub>@NT) coated by turbostratic carbon layers through the anodic hydration-induced crystal reconstruction, where the smaller nanocrystalline FeV<sub>2</sub>O<sub>4</sub> spinel phase was embedded into the newly-formed amorphous V-O-Fe phase at the heterointerface. These FeV<sub>2</sub>O<sub>4</sub>@NT cathodes achieved the synergistically combined energy storage mechanism of intercalation and pseudocapacitance for the greatly improved electrochemical performance of pouch full cells, which was not achieved by existing spinel oxides. With the polyoxometalate modified Zn metal anode at the optimized condition of 3.0M Zn(OTf)<sub>2</sub>/(ACN/H<sub>2</sub>O-0.15) in the voltage range of [0.3-1.6 V (vs. Zn/Zn<sup>2+</sup>)], the POM-Zn||FeV<sub>2</sub>O<sub>4</sub>@NT full cells achieved a high capacity of 456.8 mAh g<sup>–1</sup> at 200 mA g<sup>–1</sup>, high rate capacity of 222.0 mAh g<sup>−1</sup> even at 10,000 mA g<sup>–1</sup>, and a large energy density of 337.5 Wh kg<sup>–1</sup>. Furthermore, the chemical pillar and Fe vacancies in the amorphous V-O-Fe phase allowed FeV<sub>2</sub>O<sub>4</sub>@NT electrode to achieve a low capacity decay rate of 0.0152% per each cycle over 1,000 cycles.</p>","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":null,"pages":null},"PeriodicalIF":18.9000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ensm.2024.103637","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A fundamental understanding about the evolution of energy storage mechanism by the structure reconstruction during initial cycling is crucial in establishing their correlation with the unprecedented electrochemical performance of electrodes. Herein, we demonstrate evolutionary zinc (Zn) ion storage mechanism and kinetics of the hierarchical nanotubular FeV2O4 (FeV2O4@NT) coated by turbostratic carbon layers through the anodic hydration-induced crystal reconstruction, where the smaller nanocrystalline FeV2O4 spinel phase was embedded into the newly-formed amorphous V-O-Fe phase at the heterointerface. These FeV2O4@NT cathodes achieved the synergistically combined energy storage mechanism of intercalation and pseudocapacitance for the greatly improved electrochemical performance of pouch full cells, which was not achieved by existing spinel oxides. With the polyoxometalate modified Zn metal anode at the optimized condition of 3.0M Zn(OTf)2/(ACN/H2O-0.15) in the voltage range of [0.3-1.6 V (vs. Zn/Zn2+)], the POM-Zn||FeV2O4@NT full cells achieved a high capacity of 456.8 mAh g–1 at 200 mA g–1, high rate capacity of 222.0 mAh g−1 even at 10,000 mA g–1, and a large energy density of 337.5 Wh kg–1. Furthermore, the chemical pillar and Fe vacancies in the amorphous V-O-Fe phase allowed FeV2O4@NT electrode to achieve a low capacity decay rate of 0.0152% per each cycle over 1,000 cycles.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于锌-金属全电池的分层纳米管状尖晶石 FeV2O4 的锌离子存储进化机制
从根本上了解初始循环过程中通过结构重构演化的储能机制,对于建立其与电极前所未有的电化学性能之间的相关性至关重要。在此,我们通过阳极水合诱导的晶体重构,展示了由涡流碳层包覆的分层纳米管状 FeV2O4(FeV2O4@NT)的锌(Zn)离子存储机理和动力学演化。这些 FeV2O4@NT 阴极实现了插层和假电容的协同组合储能机制,极大地提高了袋式全电池的电化学性能,而现有的尖晶石氧化物无法实现这一点。在 3.0M Zn(OTf)2/(ACN/H2O-0.15)的优化条件下,聚氧化金属盐修饰的 Zn 金属阳极的电压范围为 [0.3-1.6 V (vs. Zn/Zn2+)]。Zn/Zn2+)]的条件下,POM-Zn||FeV2O4@NT 全电池在 200 mA g-1 的条件下实现了 456.8 mAh g-1 的高容量,在 10,000 mA g-1 的条件下实现了 222.0 mAh g-1 的高倍率容量,以及 337.5 Wh kg-1 的高能量密度。此外,无定形 V-O-Fe 相中的化学支柱和铁空位使得 FeV2O4@NT 电极在 1000 次循环中每次循环的容量衰减率低至 0.0152%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy Storage Materials
Energy Storage Materials Materials Science-General Materials Science
CiteScore
33.00
自引率
5.90%
发文量
652
审稿时长
27 days
期刊介绍: Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field. Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy. Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.
期刊最新文献
Identifying the β-to-α phase transition during the long cycling process in Na2FePO4F cathode Interfacial Deterioration in Highly Fluorinated Cation-Disordered Rock-Salt Cathode: Carbonate-Based Electrolyte vs. Ether-Based Electrolyte LiNO3 regulated rigid-flexible-synergistic polymer electrolyte boosting high-performance Li metal batteries Highly Stable Anode-free Sodium Batteries Enabled by Mechanically Deformable Nucleation Interface XCT Images-Based Modeling for Elucidating Electrochemical Inert Phase-Dependent Multiscale Electrode Kinetic Behaviors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1