Tesfa Dejenie Habtewold, Prabhavi Wijesiriwardhana, Richard J Biedrzycki, Fasil Tekola-Ayele
{"title":"Genetic distance and ancestry proportion modify the association between maternal genetic risk score of type 2 diabetes and fetal growth.","authors":"Tesfa Dejenie Habtewold, Prabhavi Wijesiriwardhana, Richard J Biedrzycki, Fasil Tekola-Ayele","doi":"10.1186/s40246-024-00645-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Maternal genetic risk of type 2 diabetes (T2D) has been associated with fetal growth, but the influence of genetic ancestry is not yet fully understood. We aimed to investigate the influence of genetic distance (GD) and genetic ancestry proportion (GAP) on the association of maternal genetic risk score of T2D (GRS<sub>T2D</sub>) with fetal weight and birthweight.</p><p><strong>Methods: </strong>Multi-ancestral pregnant women (n = 1,837) from the NICHD Fetal Growth Studies - Singletons cohort were included in the current analyses. Fetal weight (in grams, g) was estimated from ultrasound measurements of fetal biometry, and birthweight (g) was measured at delivery. GRS<sub>T2D</sub> was calculated using T2D-associated variants identified in the latest trans-ancestral genome-wide association study and was categorized into quartiles. GD and GAP were estimated using genotype data of four reference populations. GD was categorized into closest, middle, and farthest tertiles, and GAP was categorized as highest, medium, and lowest. Linear regression analyses were performed to test the association of GRS<sub>T2D</sub> with fetal weight and birthweight, adjusted for covariates, in each GD and GAP category.</p><p><strong>Results: </strong>Among women with the closest GD from African and Amerindigenous ancestries, the fourth and third GRS<sub>T2D</sub> quartile was significantly associated with 5.18 to 7.48 g (weeks 17-20) and 6.83 to 25.44 g (weeks 19-27) larger fetal weight compared to the first quartile, respectively. Among women with middle GD from European ancestry, the fourth GRS<sub>T2D</sub> quartile was significantly associated with 5.73 to 21.21 g (weeks 18-26) larger fetal weight. Furthermore, among women with middle GD from European and African ancestries, the fourth and second GRS<sub>T2D</sub> quartiles were significantly associated with 117.04 g (95% CI = 23.88-210.20, p = 0.014) and 95.05 g (95% CI = 4.73-185.36, p = 0.039) larger birthweight compared to the first quartile, respectively. The absence of significant association among women with the closest GD from East Asian ancestry was complemented by a positive significant association among women with the highest East Asian GAP.</p><p><strong>Conclusions: </strong>The association between maternal GRS<sub>T2D</sub> and fetal growth began in early-second trimester and was influenced by GD and GAP. The results suggest the use of genetic GD and GAP could improve the generalizability of GRS.</p>","PeriodicalId":13183,"journal":{"name":"Human Genomics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11264503/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Genomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40246-024-00645-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Maternal genetic risk of type 2 diabetes (T2D) has been associated with fetal growth, but the influence of genetic ancestry is not yet fully understood. We aimed to investigate the influence of genetic distance (GD) and genetic ancestry proportion (GAP) on the association of maternal genetic risk score of T2D (GRST2D) with fetal weight and birthweight.
Methods: Multi-ancestral pregnant women (n = 1,837) from the NICHD Fetal Growth Studies - Singletons cohort were included in the current analyses. Fetal weight (in grams, g) was estimated from ultrasound measurements of fetal biometry, and birthweight (g) was measured at delivery. GRST2D was calculated using T2D-associated variants identified in the latest trans-ancestral genome-wide association study and was categorized into quartiles. GD and GAP were estimated using genotype data of four reference populations. GD was categorized into closest, middle, and farthest tertiles, and GAP was categorized as highest, medium, and lowest. Linear regression analyses were performed to test the association of GRST2D with fetal weight and birthweight, adjusted for covariates, in each GD and GAP category.
Results: Among women with the closest GD from African and Amerindigenous ancestries, the fourth and third GRST2D quartile was significantly associated with 5.18 to 7.48 g (weeks 17-20) and 6.83 to 25.44 g (weeks 19-27) larger fetal weight compared to the first quartile, respectively. Among women with middle GD from European ancestry, the fourth GRST2D quartile was significantly associated with 5.73 to 21.21 g (weeks 18-26) larger fetal weight. Furthermore, among women with middle GD from European and African ancestries, the fourth and second GRST2D quartiles were significantly associated with 117.04 g (95% CI = 23.88-210.20, p = 0.014) and 95.05 g (95% CI = 4.73-185.36, p = 0.039) larger birthweight compared to the first quartile, respectively. The absence of significant association among women with the closest GD from East Asian ancestry was complemented by a positive significant association among women with the highest East Asian GAP.
Conclusions: The association between maternal GRST2D and fetal growth began in early-second trimester and was influenced by GD and GAP. The results suggest the use of genetic GD and GAP could improve the generalizability of GRS.
期刊介绍:
Human Genomics is a peer-reviewed, open access, online journal that focuses on the application of genomic analysis in all aspects of human health and disease, as well as genomic analysis of drug efficacy and safety, and comparative genomics.
Topics covered by the journal include, but are not limited to: pharmacogenomics, genome-wide association studies, genome-wide sequencing, exome sequencing, next-generation deep-sequencing, functional genomics, epigenomics, translational genomics, expression profiling, proteomics, bioinformatics, animal models, statistical genetics, genetic epidemiology, human population genetics and comparative genomics.