Dynamic profiling of Cell-free DNA fragmentation uncovers postprandial metabolic and immune alterations.

IF 3.8 3区 医学 Q2 GENETICS & HEREDITY Human Genomics Pub Date : 2025-03-18 DOI:10.1186/s40246-025-00739-4
Ziting Zhu, Tao Chen, Manting Zhang, Xiaodi Shi, Pan Yu, Jianai Liu, Xiuzhi Duan, Zhihua Tao, Xuchu Wang
{"title":"Dynamic profiling of Cell-free DNA fragmentation uncovers postprandial metabolic and immune alterations.","authors":"Ziting Zhu, Tao Chen, Manting Zhang, Xiaodi Shi, Pan Yu, Jianai Liu, Xiuzhi Duan, Zhihua Tao, Xuchu Wang","doi":"10.1186/s40246-025-00739-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Food intake affects body homeostasis and significantly changes circulating cell-free DNA (cfDNA). However, the source and elimination of postprandial cfDNA is difficult to trace, and it is unknown whether these changes can be revealed by cfDNA fragmentomics based on liquid biopsy.</p><p><strong>Methods: </strong>We performed shallow whole-genome sequencing of 30 plasma samples from 10 healthy individuals at fasting and postprandial (30-min and 2-h time points). We assessed the effect of postprandial states on cfDNA fragment size distribution and utilized deconvolutional analysis of end motifs to determine the potential roles of DNA nucleases in cfDNA fragmentation. We correlated the fragmentation index (defined as the ratio of short-to-long fragments) with gene expression to estimate the relative contribution of various cellular and tissue sources to cfDNA.</p><p><strong>Results: </strong>Compared to the fasting state, we observed a significant increase in short cfDNA fragments (70-150 bp) and a decrease in long fragments (151-250 bp) at the 30-minute postprandial state, followed by an inverse trend two hours later. Deconvolutional analysis of cfDNA end motifs showed that DNASE1L3 activity decreased at the 30-minute postprandial state, while DNASE1 and DFFB activities increased at the 2-hour postprandial state. We found that the expression of genes related to cellular metabolism and immune responses was upregulated at the postprandial state. Meanwhile, the contribution of cells and tissues involved in metabolic and immune progress to circulating plasma cfDNA was increased.</p><p><strong>Conclusions: </strong>The fragmentation of cfDNA is considerably influenced by postprandial states, highlighting the significance of taking postprandial effects into account when evaluating cfDNA as a biomarker. Furthermore, our study reveals the potential application of cfDNA fragmentation features in monitoring metabolic and immune status changes.</p>","PeriodicalId":13183,"journal":{"name":"Human Genomics","volume":"19 1","pages":"27"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Genomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40246-025-00739-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Food intake affects body homeostasis and significantly changes circulating cell-free DNA (cfDNA). However, the source and elimination of postprandial cfDNA is difficult to trace, and it is unknown whether these changes can be revealed by cfDNA fragmentomics based on liquid biopsy.

Methods: We performed shallow whole-genome sequencing of 30 plasma samples from 10 healthy individuals at fasting and postprandial (30-min and 2-h time points). We assessed the effect of postprandial states on cfDNA fragment size distribution and utilized deconvolutional analysis of end motifs to determine the potential roles of DNA nucleases in cfDNA fragmentation. We correlated the fragmentation index (defined as the ratio of short-to-long fragments) with gene expression to estimate the relative contribution of various cellular and tissue sources to cfDNA.

Results: Compared to the fasting state, we observed a significant increase in short cfDNA fragments (70-150 bp) and a decrease in long fragments (151-250 bp) at the 30-minute postprandial state, followed by an inverse trend two hours later. Deconvolutional analysis of cfDNA end motifs showed that DNASE1L3 activity decreased at the 30-minute postprandial state, while DNASE1 and DFFB activities increased at the 2-hour postprandial state. We found that the expression of genes related to cellular metabolism and immune responses was upregulated at the postprandial state. Meanwhile, the contribution of cells and tissues involved in metabolic and immune progress to circulating plasma cfDNA was increased.

Conclusions: The fragmentation of cfDNA is considerably influenced by postprandial states, highlighting the significance of taking postprandial effects into account when evaluating cfDNA as a biomarker. Furthermore, our study reveals the potential application of cfDNA fragmentation features in monitoring metabolic and immune status changes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Human Genomics
Human Genomics GENETICS & HEREDITY-
CiteScore
6.00
自引率
2.20%
发文量
55
审稿时长
11 weeks
期刊介绍: Human Genomics is a peer-reviewed, open access, online journal that focuses on the application of genomic analysis in all aspects of human health and disease, as well as genomic analysis of drug efficacy and safety, and comparative genomics. Topics covered by the journal include, but are not limited to: pharmacogenomics, genome-wide association studies, genome-wide sequencing, exome sequencing, next-generation deep-sequencing, functional genomics, epigenomics, translational genomics, expression profiling, proteomics, bioinformatics, animal models, statistical genetics, genetic epidemiology, human population genetics and comparative genomics.
期刊最新文献
Identifying behavior regulatory leverage over mental disorders transcriptomic network hubs toward lifestyle-dependent psychiatric drugs repurposing. Serine/threonine kinase 11 (STK11) associated adnexal tumors: from biology to therapeutic impact. Dynamic profiling of Cell-free DNA fragmentation uncovers postprandial metabolic and immune alterations. Correction: Epidemiologic association and shared genetic architecture between cataract and hearing difficulties among middle-aged and older adults. The CFTR K464N variant in fetuses potential increases premature birth risk in Chinese families.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1