Qingqing Qi, Huijie Zhang, Zheyu Jin, Changchun Wang, Mengyu Xia, Bandy Chen, Bomin Lv, Ludmila Peres Diaz, Xue Li, Ru Feng, Mengdi Qiu, Yang Li, David Meseguer, Xiaojiao Zheng, Wei Wang, Wei Song, He Huang, Hao Wu, Lei Chen, Marc Schneeberger, Xiaofei Yu
{"title":"Hydrogen sulfide produced by the gut microbiota impairs host metabolism via reducing GLP-1 levels in male mice","authors":"Qingqing Qi, Huijie Zhang, Zheyu Jin, Changchun Wang, Mengyu Xia, Bandy Chen, Bomin Lv, Ludmila Peres Diaz, Xue Li, Ru Feng, Mengdi Qiu, Yang Li, David Meseguer, Xiaojiao Zheng, Wei Wang, Wei Song, He Huang, Hao Wu, Lei Chen, Marc Schneeberger, Xiaofei Yu","doi":"10.1038/s42255-024-01068-x","DOIUrl":null,"url":null,"abstract":"Dysbiosis of the gut microbiota has been implicated in the pathogenesis of metabolic syndrome (MetS) and may impair host metabolism through harmful metabolites. Here, we show that Desulfovibrio, an intestinal symbiont enriched in patients with MetS, suppresses the production of the gut hormone glucagon-like peptide 1 (GLP-1) through the production of hydrogen sulfide (H2S) in male mice. Desulfovibrio-derived H2S is found to inhibit mitochondrial respiration and induce the unfolded protein response in intestinal L cells, thereby hindering GLP-1 secretion and gene expression. Remarkably, blocking Desulfovibrio and H2S with an over-the-counter drug, bismuth subsalicylate, improves GLP-1 production and ameliorates diet-induced metabolic disorder in male mice. Together, our study uncovers that Desulfovibrio-derived H2S compromises GLP-1 production, shedding light on the gut-relayed mechanisms by which harmful microbiota-derived metabolites impair host metabolism in MetS and suggesting new possibilities for treating MetS. The intestinal symbiont Desulfovibrio, which is enriched in individuals with metabolic syndrome, is found to suppress the production of GLP-1 in male mice. The over-the-counter drug bismuth subsalicylate inhibits the effect of Desulfovibrio and restores GLP-1 levels.","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"6 8","pages":"1601-1615"},"PeriodicalIF":18.9000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature metabolism","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s42255-024-01068-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Dysbiosis of the gut microbiota has been implicated in the pathogenesis of metabolic syndrome (MetS) and may impair host metabolism through harmful metabolites. Here, we show that Desulfovibrio, an intestinal symbiont enriched in patients with MetS, suppresses the production of the gut hormone glucagon-like peptide 1 (GLP-1) through the production of hydrogen sulfide (H2S) in male mice. Desulfovibrio-derived H2S is found to inhibit mitochondrial respiration and induce the unfolded protein response in intestinal L cells, thereby hindering GLP-1 secretion and gene expression. Remarkably, blocking Desulfovibrio and H2S with an over-the-counter drug, bismuth subsalicylate, improves GLP-1 production and ameliorates diet-induced metabolic disorder in male mice. Together, our study uncovers that Desulfovibrio-derived H2S compromises GLP-1 production, shedding light on the gut-relayed mechanisms by which harmful microbiota-derived metabolites impair host metabolism in MetS and suggesting new possibilities for treating MetS. The intestinal symbiont Desulfovibrio, which is enriched in individuals with metabolic syndrome, is found to suppress the production of GLP-1 in male mice. The over-the-counter drug bismuth subsalicylate inhibits the effect of Desulfovibrio and restores GLP-1 levels.
期刊介绍:
Nature Metabolism is a peer-reviewed scientific journal that covers a broad range of topics in metabolism research. It aims to advance the understanding of metabolic and homeostatic processes at a cellular and physiological level. The journal publishes research from various fields, including fundamental cell biology, basic biomedical and translational research, and integrative physiology. It focuses on how cellular metabolism affects cellular function, the physiology and homeostasis of organs and tissues, and the regulation of organismal energy homeostasis. It also investigates the molecular pathophysiology of metabolic diseases such as diabetes and obesity, as well as their treatment. Nature Metabolism follows the standards of other Nature-branded journals, with a dedicated team of professional editors, rigorous peer-review process, high standards of copy-editing and production, swift publication, and editorial independence. The journal has a high impact factor, has a certain influence in the international area, and is deeply concerned and cited by the majority of scholars.