Taurine plays a crucial role in mitochondrial translation. Mammalian cells obtain taurine via exogenous uptake mediated by the plasma membrane transporter SLC6A6 or via cytosolic biosynthesis. However, it remains unclear how taurine enters mitochondria and impacts cellular metabolism. Here we show that SLC6A6, but not exogenous taurine, is essential for mitochondrial metabolism and cancer cell growth. We discover that SLC6A6 also localizes to mitochondria and imports taurine for mitochondrial transfer RNA modifications. SLC6A6 deficiency specifically reduces mitochondrial taurine abundance and abrogates mitochondrial translation and cell proliferation. We identify protein kinase A as a regulator of SLC6A6 subcellular localization, as it promotes SLC6A6 presence at the plasma membrane while inhibiting its mitochondrial localization. Furthermore, we identify NFAT5 as a key regulator of mitochondrial function through SLC6A6 and demonstrate that targeting the NFAT5-SLC6A6 axis markedly impairs mitochondrial translation and tumour growth. Together, these findings suggest that SLC6A6 is a mitochondrial taurine transporter and an exploitable metabolic dependency in cancer.
The liver has a key role in inter-organ communication by secreting most circulating plasma proteins. However, the mechanisms governing hepatic protein secretion remain unclear. Here we show that hepatic protein secretion follows a diurnal rhythm regulated by food intake in humans and mice. Using liver microsomal proteomics, we find that proteins implicated in the early secretory pathway, such as protein glycosylation and folding in the endoplasmic reticulum (ER) and Golgi apparatus, exhibit a rhythmic expression profile, which is abolished in Bmal1-knockout mice. Mechanistically, we show that hepatic glycogenolysis provides substrates for protein N-glycosylation. In mice, perturbing hepatic glycogenolysis with pharmacological or nutritional interventions leads to ER stress and attenuates diurnal protein secretion. We confirm these results in humans, as genetic variants associated with glycogen storage disease and congenital disorders of glycosylation also alter hepatic protein secretion. Overall, our work uncovers hepatic glycogen metabolism as a circadian regulator of protein secretion.

