{"title":"Nested compressed co-representations of multiple sequential experiences during sleep","authors":"Kefei Liu, Jeremie Sibille, George Dragoi","doi":"10.1038/s41593-024-01703-6","DOIUrl":null,"url":null,"abstract":"Animals encounter and remember multiple experiences daily. During sleep, hippocampal neuronal ensembles replay past experiences and preplay future ones. Although most previous studies investigated p/replay of a single experience, it remains unclear how the hippocampus represents many experiences without major interference during sleep. By monitoring hippocampal neuronal ensembles as rats encountered 15 distinct linear track experiences, we uncovered principles for efficient multi-experience compressed p/replay representation. First, we found a serial position effect whereby the earliest and the most recent experiences had the strongest representations. Second, distinct experiences were co-represented in a multiplexed, flickering manner during nested p/replay events, which greatly enhanced the network’s representational capacity. Third, spatially contiguous and disjunct track pairs were bound together into contiguous conjunctive representations during sleep. Finally, sequences spanning day-long multi-track experiences were p/replayed at hyper-compressed ratios during sleep. These coding schemes efficiently parallelize, bind and compress multiple sequential representations with reduced interference and enhanced capacity during sleep. Liu et al. unraveled several hippocampal neural ensemble coding schemes that efficiently represent numerous daily experiences during sleep by prioritizing the most recent and earliest events, multiplexing co-representations and compressing day-long sequences.","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":null,"pages":null},"PeriodicalIF":21.2000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41593-024-01703-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Animals encounter and remember multiple experiences daily. During sleep, hippocampal neuronal ensembles replay past experiences and preplay future ones. Although most previous studies investigated p/replay of a single experience, it remains unclear how the hippocampus represents many experiences without major interference during sleep. By monitoring hippocampal neuronal ensembles as rats encountered 15 distinct linear track experiences, we uncovered principles for efficient multi-experience compressed p/replay representation. First, we found a serial position effect whereby the earliest and the most recent experiences had the strongest representations. Second, distinct experiences were co-represented in a multiplexed, flickering manner during nested p/replay events, which greatly enhanced the network’s representational capacity. Third, spatially contiguous and disjunct track pairs were bound together into contiguous conjunctive representations during sleep. Finally, sequences spanning day-long multi-track experiences were p/replayed at hyper-compressed ratios during sleep. These coding schemes efficiently parallelize, bind and compress multiple sequential representations with reduced interference and enhanced capacity during sleep. Liu et al. unraveled several hippocampal neural ensemble coding schemes that efficiently represent numerous daily experiences during sleep by prioritizing the most recent and earliest events, multiplexing co-representations and compressing day-long sequences.
期刊介绍:
Nature Neuroscience, a multidisciplinary journal, publishes papers of the utmost quality and significance across all realms of neuroscience. The editors welcome contributions spanning molecular, cellular, systems, and cognitive neuroscience, along with psychophysics, computational modeling, and nervous system disorders. While no area is off-limits, studies offering fundamental insights into nervous system function receive priority.
The journal offers high visibility to both readers and authors, fostering interdisciplinary communication and accessibility to a broad audience. It maintains high standards of copy editing and production, rigorous peer review, rapid publication, and operates independently from academic societies and other vested interests.
In addition to primary research, Nature Neuroscience features news and views, reviews, editorials, commentaries, perspectives, book reviews, and correspondence, aiming to serve as the voice of the global neuroscience community.