Adaptation of stomatal conductance, photosynthesis and water-use efficiency at shoot and canopy scales in adjacent stands of Dacrycarpus dacrydioides and Podocarpus totara.
Horacio E Bown, John E Hunt, Margaret M Barbour, Graeme N D Rogers, David Whitehead
{"title":"Adaptation of stomatal conductance, photosynthesis and water-use efficiency at shoot and canopy scales in adjacent stands of Dacrycarpus dacrydioides and Podocarpus totara.","authors":"Horacio E Bown, John E Hunt, Margaret M Barbour, Graeme N D Rogers, David Whitehead","doi":"10.1093/treephys/tpae087","DOIUrl":null,"url":null,"abstract":"<p><p>We tested an approach to estimate daily canopy net photosynthesis, A, based on estimates of transpiration, E, using measurements of sap flow and water-use efficiency, ω, by measuring δ13C in CO2 respired from shoots in the canopies of two conifers (Podocarpaceae) native to New Zealand. The trees were planted in adjacent 20-year-old stands with the same soil and environmental conditions. Leaf area index was lower for Dacrycarpus dacrydioides D.Don in Lamb (1.34 m2 m-2) than for Podocarpus totara G.Benn. ex D.Don var. totara (2.01 m2 m-2), but mean (± standard error) stem diameters were the same at 152 ± 21 mm for D. dacrydioides and 154 ± 25 mm for P. totara. Over a 28-day period, daily A (per unit ground area) ranged almost five-fold but there were no significant differences between species (mean 2.73 ± 1.02 gC m-2 day-1). This was attributable to higher daily values of E (2.63 ± 0.83 mm day-1) and lower ω (1.35 ± 0.53 gC kg H2O-1) for D. dacrydioides compared with lower E (1.82 ± 0.72 mm day-1) and higher ω (1.90 ± 0.77 gC kg H2O-1) for P. totara. We attributed this to higher nitrogen availability and nitrogen concentration per unit foliage area, Na, and greater exposure to irradiance in the D. dacrydioides canopy compared with P. totara. Our findings support earlier observations that D. dacrydioides is more adapted to sites with poor drainage. In contrast, the high retention of leaf area and maintaining low rates of transpiration by P. totara, resulting in higher water-use efficiency, is an adaptive response to survival in dry conditions. Our findings show that physiological adjustments for two species adapted to different environments led to similar canopy photosynthesis rates when the trees were grown in the same conditions. We demonstrated consistency between whole-tree and more intensive shoot-scale measurements, confirming that integrated approaches are appropriate for comparative estimates of carbon uptake in stands with different species.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tree physiology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/treephys/tpae087","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
We tested an approach to estimate daily canopy net photosynthesis, A, based on estimates of transpiration, E, using measurements of sap flow and water-use efficiency, ω, by measuring δ13C in CO2 respired from shoots in the canopies of two conifers (Podocarpaceae) native to New Zealand. The trees were planted in adjacent 20-year-old stands with the same soil and environmental conditions. Leaf area index was lower for Dacrycarpus dacrydioides D.Don in Lamb (1.34 m2 m-2) than for Podocarpus totara G.Benn. ex D.Don var. totara (2.01 m2 m-2), but mean (± standard error) stem diameters were the same at 152 ± 21 mm for D. dacrydioides and 154 ± 25 mm for P. totara. Over a 28-day period, daily A (per unit ground area) ranged almost five-fold but there were no significant differences between species (mean 2.73 ± 1.02 gC m-2 day-1). This was attributable to higher daily values of E (2.63 ± 0.83 mm day-1) and lower ω (1.35 ± 0.53 gC kg H2O-1) for D. dacrydioides compared with lower E (1.82 ± 0.72 mm day-1) and higher ω (1.90 ± 0.77 gC kg H2O-1) for P. totara. We attributed this to higher nitrogen availability and nitrogen concentration per unit foliage area, Na, and greater exposure to irradiance in the D. dacrydioides canopy compared with P. totara. Our findings support earlier observations that D. dacrydioides is more adapted to sites with poor drainage. In contrast, the high retention of leaf area and maintaining low rates of transpiration by P. totara, resulting in higher water-use efficiency, is an adaptive response to survival in dry conditions. Our findings show that physiological adjustments for two species adapted to different environments led to similar canopy photosynthesis rates when the trees were grown in the same conditions. We demonstrated consistency between whole-tree and more intensive shoot-scale measurements, confirming that integrated approaches are appropriate for comparative estimates of carbon uptake in stands with different species.
期刊介绍:
Tree Physiology promotes research in a framework of hierarchically organized systems, measuring insight by the ability to link adjacent layers: thus, investigated tree physiology phenomenon should seek mechanistic explanation in finer-scale phenomena as well as seek significance in larger scale phenomena (Passioura 1979). A phenomenon not linked downscale is merely descriptive; an observation not linked upscale, might be trivial. Physiologists often refer qualitatively to processes at finer or coarser scale than the scale of their observation, and studies formally directed at three, or even two adjacent scales are rare. To emphasize the importance of relating mechanisms to coarser scale function, Tree Physiology will highlight papers doing so particularly well as feature papers.