Study on rigid-flexible coupling modeling of planetary gear systems: Incorporation of the pass effect and random excitations

IF 4.5 1区 工程技术 Q1 ENGINEERING, MECHANICAL Mechanism and Machine Theory Pub Date : 2024-07-19 DOI:10.1016/j.mechmachtheory.2024.105745
{"title":"Study on rigid-flexible coupling modeling of planetary gear systems: Incorporation of the pass effect and random excitations","authors":"","doi":"10.1016/j.mechmachtheory.2024.105745","DOIUrl":null,"url":null,"abstract":"<div><p>A rigid-flexible coupling model for the planetary gear system is developed, in which the flexibility of the ring gear, input shaft, and carrier are considered. Subsequently, rotational modal projection is proposed to simulate the meshing of the flexible ring gear at any angle of planet gear revolution, and the coordinate transformation equations are presented to establish the coupling between rigid body and rotating flexible body. These two approaches incorporate the pass effect into the coupling model. Additionally, a method employing pre-emphasized noise to simulate random excitations is introduced. The model is validated by comparing computed modal frequencies and dynamic responses with those from ANSYS software and experiment, respectively. Results indicate that the proposed method accurately simulates the modulation signal observed in the experiment. Closely matched resonances excited by random excitations are apparent in experimental and simulated acceleration spectra, highlighting the validity of the proposed method and aiding in the determination of operational system modes. In addition, analyses of parameter influences are conducted, which further reveal the dynamic characteristics of the system.</p></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanism and Machine Theory","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094114X24001721","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A rigid-flexible coupling model for the planetary gear system is developed, in which the flexibility of the ring gear, input shaft, and carrier are considered. Subsequently, rotational modal projection is proposed to simulate the meshing of the flexible ring gear at any angle of planet gear revolution, and the coordinate transformation equations are presented to establish the coupling between rigid body and rotating flexible body. These two approaches incorporate the pass effect into the coupling model. Additionally, a method employing pre-emphasized noise to simulate random excitations is introduced. The model is validated by comparing computed modal frequencies and dynamic responses with those from ANSYS software and experiment, respectively. Results indicate that the proposed method accurately simulates the modulation signal observed in the experiment. Closely matched resonances excited by random excitations are apparent in experimental and simulated acceleration spectra, highlighting the validity of the proposed method and aiding in the determination of operational system modes. In addition, analyses of parameter influences are conducted, which further reveal the dynamic characteristics of the system.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
行星齿轮系统刚柔耦合建模研究:传递效应和随机激励的纳入
建立了行星齿轮系统的刚柔耦合模型,其中考虑了环形齿轮、输入轴和载体的柔性。随后,提出了旋转模态投影来模拟行星齿轮旋转任意角度时柔性环形齿轮的啮合,并提出了坐标变换方程来建立刚性体和旋转柔性体之间的耦合。这两种方法将传递效应纳入耦合模型。此外,还介绍了一种采用预加重噪声来模拟随机激励的方法。通过将计算出的模态频率和动态响应分别与 ANSYS 软件和实验结果进行比较,对模型进行了验证。结果表明,所提出的方法能准确模拟实验中观察到的调制信号。在实验和模拟的加速度频谱中,随机激励所激发的紧密匹配的共振是显而易见的,这突出了所提方法的有效性,并有助于确定运行系统的模态。此外,还对参数影响进行了分析,进一步揭示了系统的动态特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mechanism and Machine Theory
Mechanism and Machine Theory 工程技术-工程:机械
CiteScore
9.90
自引率
23.10%
发文量
450
审稿时长
20 days
期刊介绍: Mechanism and Machine Theory provides a medium of communication between engineers and scientists engaged in research and development within the fields of knowledge embraced by IFToMM, the International Federation for the Promotion of Mechanism and Machine Science, therefore affiliated with IFToMM as its official research journal. The main topics are: Design Theory and Methodology; Haptics and Human-Machine-Interfaces; Robotics, Mechatronics and Micro-Machines; Mechanisms, Mechanical Transmissions and Machines; Kinematics, Dynamics, and Control of Mechanical Systems; Applications to Bioengineering and Molecular Chemistry
期刊最新文献
Optimizing natural frequencies in compliant mechanisms through geometric scaling Transmission angle of planar four-bar linkages applicable for different input-output links subject to external loads A comprehensive study of the effect of thermal deformation on the dynamic characteristics of the high-speed spindle unit with various preload forces Oriblock: The origami-blocks based on hinged dissection Design and optimization of a planar anti-buckling compliant rotational joint with a remote center of motion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1