Improving inhibition efficiency of 304 stainless steel using an organic extract in acidic and high temperature environment: Experimental and theoretical studies

IF 7.5 Q1 CHEMISTRY, PHYSICAL Applied Surface Science Advances Pub Date : 2024-07-18 DOI:10.1016/j.apsadv.2024.100620
{"title":"Improving inhibition efficiency of 304 stainless steel using an organic extract in acidic and high temperature environment: Experimental and theoretical studies","authors":"","doi":"10.1016/j.apsadv.2024.100620","DOIUrl":null,"url":null,"abstract":"<div><p>Many organic inhibitors have been proposed for corrosion protection of 304 stainless steel (SS), but its effectiveness in acidic and high temperature environment is challenged. We utilized Tithonia diversifolia (Hemsl) A. grey leaf extract (TDLE) as an eco-friendly organic inhibitor to protect 304 stainless steel (SS) in acidic environment (1 M HCl) at high temperature (65 °C). The performance of TDLE was studied electrochemically using potentiodynamic polarization and electrochemical impedance spectroscopy techniques. The surface of the metal was characterized using scanning electron microscopy (SEM). The theoretical calculation was also studied to understand the inhibition process. The corrosion inhibition efficiency increases reaching 98.48 % at 65 °C in the presence of 3.5 g/L TDLE. The inhibition of TDLE on 304 SS surface was adsorption spontaneously based in Langmuir's adsorption isotherm. The SEM images show significant improvement of the 304 SS surface with TDLE. A theoretical study indicates that methyl 3.5-dicaffeoyl quinate is the most active inhibitor in TDLE. The study revealed that TDLE had good performance for inhibiting in acidic and high temperature environment.</p></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666523924000485/pdfft?md5=71498334354bc531cf87b3427cb5ff80&pid=1-s2.0-S2666523924000485-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666523924000485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Many organic inhibitors have been proposed for corrosion protection of 304 stainless steel (SS), but its effectiveness in acidic and high temperature environment is challenged. We utilized Tithonia diversifolia (Hemsl) A. grey leaf extract (TDLE) as an eco-friendly organic inhibitor to protect 304 stainless steel (SS) in acidic environment (1 M HCl) at high temperature (65 °C). The performance of TDLE was studied electrochemically using potentiodynamic polarization and electrochemical impedance spectroscopy techniques. The surface of the metal was characterized using scanning electron microscopy (SEM). The theoretical calculation was also studied to understand the inhibition process. The corrosion inhibition efficiency increases reaching 98.48 % at 65 °C in the presence of 3.5 g/L TDLE. The inhibition of TDLE on 304 SS surface was adsorption spontaneously based in Langmuir's adsorption isotherm. The SEM images show significant improvement of the 304 SS surface with TDLE. A theoretical study indicates that methyl 3.5-dicaffeoyl quinate is the most active inhibitor in TDLE. The study revealed that TDLE had good performance for inhibiting in acidic and high temperature environment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在酸性和高温环境中使用有机提取物提高 304 不锈钢的抑制效率:实验和理论研究
已有许多有机抑制剂被用于 304 不锈钢(SS)的腐蚀保护,但其在酸性和高温环境中的有效性受到质疑。我们利用 Tithonia diversifolia (Hemsl) A. 灰叶提取物(TDLE)作为一种环保型有机抑制剂,在高温(65 °C)酸性环境(1 M HCl)中保护 304 不锈钢(SS)。使用电位极化和电化学阻抗光谱技术对 TDLE 的性能进行了电化学研究。使用扫描电子显微镜(SEM)对金属表面进行了表征。同时还进行了理论计算,以了解其缓蚀过程。在 3.5 g/L TDLE 的存在下,65 °C 时的缓蚀效率提高到 98.48%。根据 Langmuir 吸附等温线,TDLE 在 304 SS 表面的抑制作用是自发的。SEM 图像显示,TDLE 使 304 SS 表面得到明显改善。理论研究表明,3.5-二咖啡酰基醌酸甲酯是 TDLE 中最活跃的抑制剂。研究表明,TDLE 在酸性和高温环境中具有良好的抑制性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.10
自引率
1.60%
发文量
128
审稿时长
66 days
期刊介绍:
期刊最新文献
Performance analysis of turning operation parameters empirically on Delrin Surface Engineered 2D Materials based Platforms for Advanced Technologies The essential synergy between experiments and theory in applied surface science Manufacturing and properties characterization of Ti patterned coatings for water electrolyzers by CSAM Exploring the role of edges in surface functionalization and stability of plasma-modified carbon materials: Experimental and DFT insights
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1