{"title":"Incremental multi temporal InSAR analysis via recursive sequential estimator for long-term landslide deformation monitoring","authors":"","doi":"10.1016/j.isprsjprs.2024.07.006","DOIUrl":null,"url":null,"abstract":"<div><p>Distributed Scatterers Interferometry (DS-InSAR) has been widely applied to increase the number of measurement points (MP) in complex mountainous areas with dense vegetation and complicated topography. However, DS-InSAR method adopts batch processing mode. When new observation data acquired, the entire archived data is reprocessed, completely ignoring the existing results, and not suitable for high-performance processing of operational observation data. The current research focuses on the automation of SAR data acquisition and processing optimization, but the core time series analysis method remains unchanged. In this paper, based on the traditional Sequential Estimator proposed by Ansari in 2017, a Recursive Sequential Estimator with Flexible Batches (RSEFB) is improved to divide the large dataset flexibly without requirements on the number of images in each subset. This method updates and processes the newly acquired SAR data in near real-time, and obtains long-time sequence results without reprocessing the entire data archived, helpful to the early warning of landslide disaster in the future. 132 Sentinel-1 SAR images and 44 TerraSAR-X SAR images were utilized to inverse the line of sight (LOS) surface deformation of Xishancun landslide and Huangnibazi landslide in Li County, Sichuan Province, China. RSEFB method is applied to retrieve time-series displacements from Sentinel-1 and TerraSAR-X datasets, respectively. The comparison with the traditional Sequential Estimator and validation through Global Position System (GPS) monitoring data proved the effectiveness and reliability of the RSEFB method. The research shows that Xishancun landslide is in a state of slow and uneven deformation, and the non-sliding part of Huangnibazi landslide has obvious deformation signal, so continuous monitoring is needed to prevent and mitigate possible catastrophic slope failure events.</p></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":null,"pages":null},"PeriodicalIF":10.6000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924271624002739","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Distributed Scatterers Interferometry (DS-InSAR) has been widely applied to increase the number of measurement points (MP) in complex mountainous areas with dense vegetation and complicated topography. However, DS-InSAR method adopts batch processing mode. When new observation data acquired, the entire archived data is reprocessed, completely ignoring the existing results, and not suitable for high-performance processing of operational observation data. The current research focuses on the automation of SAR data acquisition and processing optimization, but the core time series analysis method remains unchanged. In this paper, based on the traditional Sequential Estimator proposed by Ansari in 2017, a Recursive Sequential Estimator with Flexible Batches (RSEFB) is improved to divide the large dataset flexibly without requirements on the number of images in each subset. This method updates and processes the newly acquired SAR data in near real-time, and obtains long-time sequence results without reprocessing the entire data archived, helpful to the early warning of landslide disaster in the future. 132 Sentinel-1 SAR images and 44 TerraSAR-X SAR images were utilized to inverse the line of sight (LOS) surface deformation of Xishancun landslide and Huangnibazi landslide in Li County, Sichuan Province, China. RSEFB method is applied to retrieve time-series displacements from Sentinel-1 and TerraSAR-X datasets, respectively. The comparison with the traditional Sequential Estimator and validation through Global Position System (GPS) monitoring data proved the effectiveness and reliability of the RSEFB method. The research shows that Xishancun landslide is in a state of slow and uneven deformation, and the non-sliding part of Huangnibazi landslide has obvious deformation signal, so continuous monitoring is needed to prevent and mitigate possible catastrophic slope failure events.
期刊介绍:
The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive.
P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields.
In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.