首页 > 最新文献

ISPRS Journal of Photogrammetry and Remote Sensing最新文献

英文 中文
Estimation of global riverine total phosphorus concentration based on multi-source data and stacked ensemble learning 基于多源数据和堆叠集成学习的全球河流总磷浓度估算
IF 12.7 1区 地球科学 Q1 GEOGRAPHY, PHYSICAL Pub Date : 2026-02-11 DOI: 10.1016/j.isprsjprs.2026.01.041
Qi Li, Lan Zhang, Xi Chen, Chen Zhang, Jingyi Tian, Xianghan Sun, Liqiao Tian
{"title":"Estimation of global riverine total phosphorus concentration based on multi-source data and stacked ensemble learning","authors":"Qi Li, Lan Zhang, Xi Chen, Chen Zhang, Jingyi Tian, Xianghan Sun, Liqiao Tian","doi":"10.1016/j.isprsjprs.2026.01.041","DOIUrl":"https://doi.org/10.1016/j.isprsjprs.2026.01.041","url":null,"abstract":"","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"119 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2026-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146153115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Explainable urban renewal prediction at building-scale using hierarchical graph neural networks 基于层次图神经网络的建筑尺度可解释的城市更新预测
IF 12.7 1区 地球科学 Q1 GEOGRAPHY, PHYSICAL Pub Date : 2026-02-11 DOI: 10.1016/j.isprsjprs.2026.02.013
Xiaoqin Yan, Zhou Huang, Shuliang Ren, Qia Zhu, Ganmin Yin, Junnan Qi, Yi Bao
{"title":"Explainable urban renewal prediction at building-scale using hierarchical graph neural networks","authors":"Xiaoqin Yan, Zhou Huang, Shuliang Ren, Qia Zhu, Ganmin Yin, Junnan Qi, Yi Bao","doi":"10.1016/j.isprsjprs.2026.02.013","DOIUrl":"https://doi.org/10.1016/j.isprsjprs.2026.02.013","url":null,"abstract":"","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"101 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2026-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146153116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EAV-DETR: Efficient Arbitrary-View oriented object detection with probabilistic guarantees for UAV imagery EAV-DETR:基于概率保证的无人机图像高效任意视图目标检测
IF 12.7 1区 地球科学 Q1 GEOGRAPHY, PHYSICAL Pub Date : 2026-02-10 DOI: 10.1016/j.isprsjprs.2026.02.009
Haoyu Zuo, Minghao Ning, Yiming Shu, Shucheng Huang, Chen Sun
Oriented object detection is critical for enhancing the visual perception of unmanned aerial vehicles (UAVs). However, existing detectors primarily designed for general aerial imagery often struggle to address the unique challenges of UAV imagery, including substantial scale variations, dense clustering, and arbitrary orientations. Furthermore, these models lack probabilistic guarantees required for safety-critical applications. To address these challenges, we propose EAV-DETR, an efficient oriented object detection transformer designed for UAV imagery. Specifically, we first propose a novel scale-adaptive center supervision (SACS) strategy that explicitly enhances the encoder’s feature representations by imposing pixel-level localization constraints with zero inference overhead. Second, we design an anisotropic decoupled rotational attention (ADRA) module, which achieves superior feature alignment for objects of arbitrary morphology by generating a non-rigid adaptive sampling field. Finally, we propose a pose-aware Mondrian conformal prediction (PA-MCP) method, which utilizes the UAV’s flight pose as a physical prior to generate prediction sets with conditional coverage guarantees, thereby providing reliable uncertainty quantification. Extensive experiments on multiple aerial imagery datasets validate the effectiveness of our model. Compared to previous state-of-the-art methods, EAV-DETR improves AP75 on CODrone by 1.76% while achieving a 52% faster inference speed (46.38 vs 30.55 FPS), and improves AP50:95 on UAV-ROD by 3.17%. Our code is available at https://github.com/zzzhak/EAV-DETR.
定向目标检测是提高无人机视觉感知能力的关键。然而,现有的探测器主要是为一般航空图像设计的,通常难以解决无人机图像的独特挑战,包括大量的尺度变化、密集的聚类和任意方向。此外,这些模型缺乏安全关键应用程序所需的概率保证。为了解决这些挑战,我们提出了EAV-DETR,一种针对无人机图像设计的高效定向目标检测转换器。具体来说,我们首先提出了一种新的尺度自适应中心监督(SACS)策略,该策略通过施加零推理开销的像素级定位约束来显式增强编码器的特征表示。其次,我们设计了一个各向异性解耦旋转注意(ADRA)模块,该模块通过生成非刚性自适应采样场来实现对任意形态目标的优越特征对齐。最后,我们提出了一种姿态感知的蒙德里安保形预测(PA-MCP)方法,该方法利用无人机的飞行姿态作为物理先验来生成具有条件覆盖保证的预测集,从而提供可靠的不确定性量化。在多个航空图像数据集上的大量实验验证了我们模型的有效性。与之前最先进的方法相比,EAV-DETR在CODrone上的AP75提高了1.76%,推理速度提高了52% (46.38 vs 30.55 FPS),在UAV-ROD上的AP50:95提高了3.17%。我们的代码可在https://github.com/zzzhak/EAV-DETR上获得。
{"title":"EAV-DETR: Efficient Arbitrary-View oriented object detection with probabilistic guarantees for UAV imagery","authors":"Haoyu Zuo, Minghao Ning, Yiming Shu, Shucheng Huang, Chen Sun","doi":"10.1016/j.isprsjprs.2026.02.009","DOIUrl":"https://doi.org/10.1016/j.isprsjprs.2026.02.009","url":null,"abstract":"Oriented object detection is critical for enhancing the visual perception of unmanned aerial vehicles (UAVs). However, existing detectors primarily designed for general aerial imagery often struggle to address the unique challenges of UAV imagery, including substantial scale variations, dense clustering, and arbitrary orientations. Furthermore, these models lack probabilistic guarantees required for safety-critical applications. To address these challenges, we propose EAV-DETR, an efficient oriented object detection transformer designed for UAV imagery. Specifically, we first propose a novel scale-adaptive center supervision (SACS) strategy that explicitly enhances the encoder’s feature representations by imposing pixel-level localization constraints with zero inference overhead. Second, we design an anisotropic decoupled rotational attention (ADRA) module, which achieves superior feature alignment for objects of arbitrary morphology by generating a non-rigid adaptive sampling field. Finally, we propose a pose-aware Mondrian conformal prediction (PA-MCP) method, which utilizes the UAV’s flight pose as a physical prior to generate prediction sets with conditional coverage guarantees, thereby providing reliable uncertainty quantification. Extensive experiments on multiple aerial imagery datasets validate the effectiveness of our model. Compared to previous state-of-the-art methods, EAV-DETR improves <mml:math altimg=\"si152.svg\" display=\"inline\"><mml:msub><mml:mrow><mml:mtext>AP</mml:mtext></mml:mrow><mml:mrow><mml:mn>75</mml:mn></mml:mrow></mml:msub></mml:math> on CODrone by 1.76% while achieving a 52% faster inference speed (46.38 vs 30.55 FPS), and improves <mml:math altimg=\"si186.svg\" display=\"inline\"><mml:msub><mml:mrow><mml:mtext>AP</mml:mtext></mml:mrow><mml:mrow><mml:mn>50</mml:mn><mml:mo>:</mml:mo><mml:mn>95</mml:mn></mml:mrow></mml:msub></mml:math> on UAV-ROD by 3.17%. Our code is available at <ce:inter-ref xlink:href=\"https://github.com/zzzhak/EAV-DETR\" xlink:type=\"simple\">https://github.com/zzzhak/EAV-DETR</ce:inter-ref>.","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"9 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2026-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146146708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A near-real-time multi-temporal polarimetric InSAR method for landslides monitoring in rapid-decorrelation scenarios 快速去相关情景下近实时多时相极化InSAR滑坡监测方法
IF 12.7 1区 地球科学 Q1 GEOGRAPHY, PHYSICAL Pub Date : 2026-02-09 DOI: 10.1016/j.isprsjprs.2026.02.006
Yaogang Chen, Jun Hu, Jordi J. Mallorqui, Haiqiang Fu, Wanji Zheng, Aoqing Guo
Interferometric synthetic aperture radar (InSAR) technology can measure ground deformation with high precision over wide areas, which is essential for understanding natural hazards and ensuring infrastructure safety. However, in regions with dense vegetation or frequent surface changes, the radar echoes lose stability over time due to temporal decorrelation. This severely limits the reliability and accuracy of InSAR measurements. Many advanced processing methods have been developed to address this issue, and while they work well in stable conditions, their performance degrades sharply when coherence is lost rapidly. To overcome this limitation, this study proposes a near-real-time sequential multi-temporal polarimetric InSAR (MT-PolInSAR) method tailored for such conditions. For each new acquisition, a stack comprising only the latest images is formed, and statistically homogeneous pixels are reselected dynamically to adapt to evolving scattering mechanisms. A sequential polarimetric-temporal phase optimization is then applied within the stack that confines estimation to short, high-coherence windows and avoids coherence loss between stacks, thereby reducing the effect of fast temporal decorrelation. Deformation time series are subsequently updated through a sequential least squares (LS) inversion using only the newly formed interferograms, which eliminates the need to reprocess the whole dataset and enables timely updates. Experiments with simulated data and full-polarization ALOS-2 and dual-polarization Sentinel-1 images over Fengjie, China, demonstrate that the proposed method significantly increases coherent pixel density and improves deformation accuracy in rapid-decorrelation areas, while enabling genuine near-real-time monitoring with a more efficient processing strategy.
干涉合成孔径雷达(InSAR)技术可以在大范围内高精度测量地面变形,这对于了解自然灾害和确保基础设施安全至关重要。然而,在植被密集或地表变化频繁的地区,雷达回波由于时间去相关而失去稳定性。这严重限制了InSAR测量的可靠性和准确性。许多先进的处理方法已经开发出来解决这个问题,虽然它们在稳定条件下工作良好,但当相干性迅速丧失时,它们的性能急剧下降。为了克服这一限制,本研究提出了一种针对这种情况量身定制的近实时序列多时相偏振InSAR (MT-PolInSAR)方法。对于每一个新的采集,只形成一个由最新图像组成的堆栈,并动态地重新选择统计上均匀的像素以适应不断变化的散射机制。然后在堆栈内应用顺序极化-时间相位优化,将估计限制在短的高相干窗口,避免堆栈之间的相干损失,从而减少快速时间去相关的影响。变形时间序列随后仅使用新形成的干涉图通过顺序最小二乘(LS)反演进行更新,从而消除了对整个数据集进行重新处理的需要,并实现了及时更新。利用模拟数据和全偏振ALOS-2和双偏振Sentinel-1图像在中国Fengjie上空进行的实验表明,该方法显著提高了快速去相关区域的相干像元密度和变形精度,同时以更高效的处理策略实现了真正的近实时监测。
{"title":"A near-real-time multi-temporal polarimetric InSAR method for landslides monitoring in rapid-decorrelation scenarios","authors":"Yaogang Chen, Jun Hu, Jordi J. Mallorqui, Haiqiang Fu, Wanji Zheng, Aoqing Guo","doi":"10.1016/j.isprsjprs.2026.02.006","DOIUrl":"https://doi.org/10.1016/j.isprsjprs.2026.02.006","url":null,"abstract":"Interferometric synthetic aperture radar (InSAR) technology can measure ground deformation with high precision over wide areas, which is essential for understanding natural hazards and ensuring infrastructure safety. However, in regions with dense vegetation or frequent surface changes, the radar echoes lose stability over time due to temporal decorrelation. This severely limits the reliability and accuracy of InSAR measurements. Many advanced processing methods have been developed to address this issue, and while they work well in stable conditions, their performance degrades sharply when coherence is lost rapidly. To overcome this limitation, this study proposes a near-real-time sequential multi-temporal polarimetric InSAR (MT-PolInSAR) method tailored for such conditions. For each new acquisition, a stack comprising only the latest images is formed, and statistically homogeneous pixels are reselected dynamically to adapt to evolving scattering mechanisms. A sequential polarimetric-temporal phase optimization is then applied within the stack that confines estimation to short, high-coherence windows and avoids coherence loss between stacks, thereby reducing the effect of fast temporal decorrelation. Deformation time series are subsequently updated through a sequential least squares (LS) inversion using only the newly formed interferograms, which eliminates the need to reprocess the whole dataset and enables timely updates. Experiments with simulated data and full-polarization ALOS-2 and dual-polarization Sentinel-1 images over Fengjie, China, demonstrate that the proposed method significantly increases coherent pixel density and improves deformation accuracy in rapid-decorrelation areas, while enabling genuine near-real-time monitoring with a more efficient processing strategy.","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"31 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146146858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MMP-Mapper: Multi-modal priors enhancing vectorized HD road map construction from aerial imagery MMP-Mapper:多模态先验从航空图像增强矢量化高清地图建设
IF 12.7 1区 地球科学 Q1 GEOGRAPHY, PHYSICAL Pub Date : 2026-02-07 DOI: 10.1016/j.isprsjprs.2026.02.008
Haofeng Xie, Huiwei Jiang, Yandi Yang, Xiangyun Hu
{"title":"MMP-Mapper: Multi-modal priors enhancing vectorized HD road map construction from aerial imagery","authors":"Haofeng Xie, Huiwei Jiang, Yandi Yang, Xiangyun Hu","doi":"10.1016/j.isprsjprs.2026.02.008","DOIUrl":"https://doi.org/10.1016/j.isprsjprs.2026.02.008","url":null,"abstract":"","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"17 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2026-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146135030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multimodal remote sensing change detection: An image matching perspective 多模态遥感变化检测:图像匹配视角
IF 12.7 1区 地球科学 Q1 GEOGRAPHY, PHYSICAL Pub Date : 2026-02-06 DOI: 10.1016/j.isprsjprs.2026.02.004
Hongruixuan Chen, Cuiling Lan, Jian Song, Damian Ibañez, Junshi Xia, Konrad Schindler, Naoto Yokoya
{"title":"Multimodal remote sensing change detection: An image matching perspective","authors":"Hongruixuan Chen, Cuiling Lan, Jian Song, Damian Ibañez, Junshi Xia, Konrad Schindler, Naoto Yokoya","doi":"10.1016/j.isprsjprs.2026.02.004","DOIUrl":"https://doi.org/10.1016/j.isprsjprs.2026.02.004","url":null,"abstract":"","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"182 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2026-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146135296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Harnessing conditional generative adversarial networks for SAR-to-optical image translation via auxiliary geospatial landscape pattern-augmentation 利用条件生成对抗网络,通过辅助地理空间景观模式增强进行sar到光学图像的转换
IF 12.7 1区 地球科学 Q1 GEOGRAPHY, PHYSICAL Pub Date : 2026-02-06 DOI: 10.1016/j.isprsjprs.2026.01.043
Hongbo Liang, Xuezhi Yang, Xiangyu Yang, Xin Jing
{"title":"Harnessing conditional generative adversarial networks for SAR-to-optical image translation via auxiliary geospatial landscape pattern-augmentation","authors":"Hongbo Liang, Xuezhi Yang, Xiangyu Yang, Xin Jing","doi":"10.1016/j.isprsjprs.2026.01.043","DOIUrl":"https://doi.org/10.1016/j.isprsjprs.2026.01.043","url":null,"abstract":"","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"311 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2026-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146135031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
WHU-STree: A multi-modal benchmark dataset for street tree inventory whu - tree:用于街道树木清单的多模态基准数据集
IF 12.7 1区 地球科学 Q1 GEOGRAPHY, PHYSICAL Pub Date : 2026-02-06 DOI: 10.1016/j.isprsjprs.2026.02.011
Ruifei Ding, Zhe Chen, Wen Fan, Chen Long, Huijuan Xiao, Yelu Zeng, Zhen Dong, Bisheng Yang
{"title":"WHU-STree: A multi-modal benchmark dataset for street tree inventory","authors":"Ruifei Ding, Zhe Chen, Wen Fan, Chen Long, Huijuan Xiao, Yelu Zeng, Zhen Dong, Bisheng Yang","doi":"10.1016/j.isprsjprs.2026.02.011","DOIUrl":"https://doi.org/10.1016/j.isprsjprs.2026.02.011","url":null,"abstract":"","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"1 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2026-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146135295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
L2M-Reg: Building-level uncertainty-aware registration of outdoor LiDAR point clouds and semantic 3D city models L2M-Reg:室外激光雷达点云和语义三维城市模型的建筑级不确定性感知配准
IF 12.7 1区 地球科学 Q1 GEOGRAPHY, PHYSICAL Pub Date : 2026-02-06 DOI: 10.1016/j.isprsjprs.2026.02.005
Ziyang Xu, Benedikt Schwab, Yihui Yang, Thomas H. Kolbe, Christoph Holst
{"title":"L2M-Reg: Building-level uncertainty-aware registration of outdoor LiDAR point clouds and semantic 3D city models","authors":"Ziyang Xu, Benedikt Schwab, Yihui Yang, Thomas H. Kolbe, Christoph Holst","doi":"10.1016/j.isprsjprs.2026.02.005","DOIUrl":"https://doi.org/10.1016/j.isprsjprs.2026.02.005","url":null,"abstract":"","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"47 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2026-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146135038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptive image zoom-in with bounding box transformation for UAV object detection 基于边界盒变换的无人机目标检测自适应图像放大
IF 12.7 1区 地球科学 Q1 GEOGRAPHY, PHYSICAL Pub Date : 2026-02-05 DOI: 10.1016/j.isprsjprs.2026.01.036
Tao Wang, Chenyu Lin, Chenwei Tang, Jizhe Zhou, Deng Xiong, Jianan Li, Jian Zhao, Jiancheng Lv
{"title":"Adaptive image zoom-in with bounding box transformation for UAV object detection","authors":"Tao Wang, Chenyu Lin, Chenwei Tang, Jizhe Zhou, Deng Xiong, Jianan Li, Jian Zhao, Jiancheng Lv","doi":"10.1016/j.isprsjprs.2026.01.036","DOIUrl":"https://doi.org/10.1016/j.isprsjprs.2026.01.036","url":null,"abstract":"","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"2 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2026-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146135035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
ISPRS Journal of Photogrammetry and Remote Sensing
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1