{"title":"Mechanism and kinetics study of vanadium leaching from landfilled metallurgical residues by ultrasonic with ozonation enhancement in a low-acid medium","authors":"","doi":"10.1016/j.ultsonch.2024.106998","DOIUrl":null,"url":null,"abstract":"<div><p>Landfilled metallurgical residues are valuable raw materials for the recovery of strategic vanadium resources. However, efficient separation of vanadium from these residues is challenging due to its strong oxidation resistance and coating within silicate inclusions. To address this issue, this study proposes an enhanced leaching process utilizing the synergistic effect of O<sub>3</sub>-catalyzed ultrasonic field in a low concentration sulfuric acid system. Results show that following a 10-minute O<sub>3</sub> and ultrasonic treatment, the direct leaching rate of vanadium experienced a remarkable 46.7 % increase. Quenching experiments revealed a hierarchical order of active species within the reaction process:⋅OH >⋅O<sub>2</sub><sup>−</sup>> H<sup>+</sup>, with⋅OH oxidation exhibiting the most pronounced capacity for disrupting the inclusion structure. Electron Paramagnetic Resonance analysis indicated that the highest⋅OH yield arose from the combined application of ultrasound and ozone. Kinetic investigations demonstrated that the vanadium leaching process is governed by interfacial chemical reactions. The activation energy of vanadium oxidation leaching under ultrasonic-O<sub>3</sub> conditions was determined to be 40.41 kJ/mol, representing a 20.19 % reduction compared to ultrasonic conditions alone. Through the integration of analysis, characterization, and comparative evaluations, it was discerned that the synergistic impact of ultrasonic and ozone treatments significantly enhances the breakdown of silicate inclusions by low-concentration HF, particularly in the conversion of Si<img>O<img>Si bonds into Si<img>OH bonds and Si<img>F bonds. In summary, the refined leaching methodology incorporating ozone catalysis in conjunction with ultrasonic treatment provides a new idea for the separation and extraction of refractory residual vanadium.</p></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":null,"pages":null},"PeriodicalIF":8.7000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1350417724002463/pdfft?md5=f10a3c8269e9fe198655142d6eb0a158&pid=1-s2.0-S1350417724002463-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics Sonochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350417724002463","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Landfilled metallurgical residues are valuable raw materials for the recovery of strategic vanadium resources. However, efficient separation of vanadium from these residues is challenging due to its strong oxidation resistance and coating within silicate inclusions. To address this issue, this study proposes an enhanced leaching process utilizing the synergistic effect of O3-catalyzed ultrasonic field in a low concentration sulfuric acid system. Results show that following a 10-minute O3 and ultrasonic treatment, the direct leaching rate of vanadium experienced a remarkable 46.7 % increase. Quenching experiments revealed a hierarchical order of active species within the reaction process:⋅OH >⋅O2−> H+, with⋅OH oxidation exhibiting the most pronounced capacity for disrupting the inclusion structure. Electron Paramagnetic Resonance analysis indicated that the highest⋅OH yield arose from the combined application of ultrasound and ozone. Kinetic investigations demonstrated that the vanadium leaching process is governed by interfacial chemical reactions. The activation energy of vanadium oxidation leaching under ultrasonic-O3 conditions was determined to be 40.41 kJ/mol, representing a 20.19 % reduction compared to ultrasonic conditions alone. Through the integration of analysis, characterization, and comparative evaluations, it was discerned that the synergistic impact of ultrasonic and ozone treatments significantly enhances the breakdown of silicate inclusions by low-concentration HF, particularly in the conversion of SiOSi bonds into SiOH bonds and SiF bonds. In summary, the refined leaching methodology incorporating ozone catalysis in conjunction with ultrasonic treatment provides a new idea for the separation and extraction of refractory residual vanadium.
期刊介绍:
Ultrasonics Sonochemistry stands as a premier international journal dedicated to the publication of high-quality research articles primarily focusing on chemical reactions and reactors induced by ultrasonic waves, known as sonochemistry. Beyond chemical reactions, the journal also welcomes contributions related to cavitation-induced events and processing, including sonoluminescence, and the transformation of materials on chemical, physical, and biological levels.
Since its inception in 1994, Ultrasonics Sonochemistry has consistently maintained a top ranking in the "Acoustics" category, reflecting its esteemed reputation in the field. The journal publishes exceptional papers covering various areas of ultrasonics and sonochemistry. Its contributions are highly regarded by both academia and industry stakeholders, demonstrating its relevance and impact in advancing research and innovation.