Utilizing ultrasound combined with quinoa protein to improve the texture and rheological properties of Chinese style reduced-salt pork meatballs (lion’s head)
{"title":"Utilizing ultrasound combined with quinoa protein to improve the texture and rheological properties of Chinese style reduced-salt pork meatballs (lion’s head)","authors":"","doi":"10.1016/j.ultsonch.2024.106997","DOIUrl":null,"url":null,"abstract":"<div><p>This study aimed to investigate the effect of ultrasound treatment times (30 min and 60 min) and levels of quinoa protein (QPE) addition (1 % and 2 %) on the quality of Chinese style reduced-salt pork meatballs, commonly known as lion’s head. The water-holding capacity (WHC), gel and rheology characteristics, and protein conformation were assessed. The results indicated that extending the ultrasound treatment time and elevating the quinoa protein content caused conspicuous improvements (<em>P</em><0.05) in the cooking yield, WHC, textural characteristics, color difference, and salt-soluble protein (SSP) solubility of the meatballs. Furthermore, the structural alterations induced by the ultrasound treatment combined with quinoa protein addition included enhancement in β-sheet, β-turn, and random coil structure contents, along with a red-shift in the intrinsic fluorescence peak. Additionally, the storage (G’) and loss modulus (G’’) of the raw meatballs significantly enhanced (<em>P</em><0.05), indicating a denser gel structure in parallel with the microstructure. In conclusion, the findings demonstrated that ultrasound combined with quinoa protein enhanced the WHC and texture properties of Chinese style reduced-salt pork meatballs by improving SSP solubility.</p></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":null,"pages":null},"PeriodicalIF":8.7000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1350417724002451/pdfft?md5=bdd9dec8bb6f6882c905b14672b92940&pid=1-s2.0-S1350417724002451-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics Sonochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350417724002451","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to investigate the effect of ultrasound treatment times (30 min and 60 min) and levels of quinoa protein (QPE) addition (1 % and 2 %) on the quality of Chinese style reduced-salt pork meatballs, commonly known as lion’s head. The water-holding capacity (WHC), gel and rheology characteristics, and protein conformation were assessed. The results indicated that extending the ultrasound treatment time and elevating the quinoa protein content caused conspicuous improvements (P<0.05) in the cooking yield, WHC, textural characteristics, color difference, and salt-soluble protein (SSP) solubility of the meatballs. Furthermore, the structural alterations induced by the ultrasound treatment combined with quinoa protein addition included enhancement in β-sheet, β-turn, and random coil structure contents, along with a red-shift in the intrinsic fluorescence peak. Additionally, the storage (G’) and loss modulus (G’’) of the raw meatballs significantly enhanced (P<0.05), indicating a denser gel structure in parallel with the microstructure. In conclusion, the findings demonstrated that ultrasound combined with quinoa protein enhanced the WHC and texture properties of Chinese style reduced-salt pork meatballs by improving SSP solubility.
期刊介绍:
Ultrasonics Sonochemistry stands as a premier international journal dedicated to the publication of high-quality research articles primarily focusing on chemical reactions and reactors induced by ultrasonic waves, known as sonochemistry. Beyond chemical reactions, the journal also welcomes contributions related to cavitation-induced events and processing, including sonoluminescence, and the transformation of materials on chemical, physical, and biological levels.
Since its inception in 1994, Ultrasonics Sonochemistry has consistently maintained a top ranking in the "Acoustics" category, reflecting its esteemed reputation in the field. The journal publishes exceptional papers covering various areas of ultrasonics and sonochemistry. Its contributions are highly regarded by both academia and industry stakeholders, demonstrating its relevance and impact in advancing research and innovation.