Optimising extended fin design and heat transfer coefficient for improved heat transfer and PCM recover time in thermal management of batteries

IF 6.1 2区 工程技术 Q2 ENERGY & FUELS Applied Thermal Engineering Pub Date : 2024-07-20 DOI:10.1016/j.applthermaleng.2024.123964
{"title":"Optimising extended fin design and heat transfer coefficient for improved heat transfer and PCM recover time in thermal management of batteries","authors":"","doi":"10.1016/j.applthermaleng.2024.123964","DOIUrl":null,"url":null,"abstract":"<div><p>The thermal sensitivity of lithium-ion batteries (LIBs), crucial for electric vehicles, poses a significant challenge, especially under harsh ambient conditions. This study introduces an innovative cooling strategy that combines phase change materials (PCMs) with active cooling to achieve uniform temperature distribution across LIBs and optimize recovery time for PCM solidification. Using the Newman, Tiedemann, Gu, and Kim (NTGK) model for numerical analysis, this study investigates the heat transfer behaviour of a single Li-ion cell equipped with PCM for passive cooling under different battery C-rates, ambient temperatures, PCM thickness, internal and external fins, and convective heat transfer coefficients during 3C–0C and 3C–1C discharging–charging cycles. The addition of a 2 mm layer of PCM to the cell results in a reduction of the maximum temperature by 28.2 °C at a discharging rate of 3C at 20 W/m<sup>2</sup>·K when compared to an uncooled, bare cell configuration at the ambient temperature of 30 °C. Adding six internal fins decreases the cell temperature by 0.63 °C and the PCM temperature by 0.73 °C at the ambient temperature of 30 °C. Furthermore, increasing the convective heat transfer coefficient to 100 W/m<sup>2</sup>·K and extending with 6 fins of 4 mm each reduces the maximum battery temperature by 40.63 °C, optimizing the solidification time of PCM to 800 s at an ambient temperature of 40 °C. The findings reveal that optimally configured extended fins integrated with PCM reduce peak temperatures during high C-rate operations and shorten the PCM recovery time during the discharging-standalone and discharging-charging phases, facilitating uninterrupted functionality across repeated cycles, even in extreme ambient environments.</p></div>","PeriodicalId":8201,"journal":{"name":"Applied Thermal Engineering","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359431124016326","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The thermal sensitivity of lithium-ion batteries (LIBs), crucial for electric vehicles, poses a significant challenge, especially under harsh ambient conditions. This study introduces an innovative cooling strategy that combines phase change materials (PCMs) with active cooling to achieve uniform temperature distribution across LIBs and optimize recovery time for PCM solidification. Using the Newman, Tiedemann, Gu, and Kim (NTGK) model for numerical analysis, this study investigates the heat transfer behaviour of a single Li-ion cell equipped with PCM for passive cooling under different battery C-rates, ambient temperatures, PCM thickness, internal and external fins, and convective heat transfer coefficients during 3C–0C and 3C–1C discharging–charging cycles. The addition of a 2 mm layer of PCM to the cell results in a reduction of the maximum temperature by 28.2 °C at a discharging rate of 3C at 20 W/m2·K when compared to an uncooled, bare cell configuration at the ambient temperature of 30 °C. Adding six internal fins decreases the cell temperature by 0.63 °C and the PCM temperature by 0.73 °C at the ambient temperature of 30 °C. Furthermore, increasing the convective heat transfer coefficient to 100 W/m2·K and extending with 6 fins of 4 mm each reduces the maximum battery temperature by 40.63 °C, optimizing the solidification time of PCM to 800 s at an ambient temperature of 40 °C. The findings reveal that optimally configured extended fins integrated with PCM reduce peak temperatures during high C-rate operations and shorten the PCM recovery time during the discharging-standalone and discharging-charging phases, facilitating uninterrupted functionality across repeated cycles, even in extreme ambient environments.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化扩展鳍片设计和传热系数,改善电池热管理中的传热和 PCM 恢复时间
锂离子电池(LIB)对电动汽车至关重要,其热敏性是一项重大挑战,尤其是在恶劣的环境条件下。本研究介绍了一种创新的冷却策略,它将相变材料 (PCM) 与主动冷却相结合,以实现锂离子电池的均匀温度分布,并优化 PCM 固化的恢复时间。本研究使用 Newman、Tiedemann、Gu 和 Kim (NTGK) 模型进行数值分析,研究了在 3C-0C 和 3C-1C 放电-充电循环期间,在不同的电池 C 速率、环境温度、PCM 厚度、内部和外部鳍片以及对流传热系数条件下,配备 PCM 进行被动冷却的单个锂离子电池的传热行为。与环境温度为 30 °C、未冷却的裸电池配置相比,在环境温度为 20 W/m2-K 的 3C 放电速率下,向电池中添加 2 mm 厚的 PCM 层可将最高温度降低 28.2 °C。在环境温度为 30 °C 时,增加六个内部散热片可使电池温度降低 0.63 °C,PCM 温度降低 0.73 °C。此外,将对流传热系数提高到 100 W/m2-K,并增加 6 片每片 4 毫米的鳍片,可将电池的最高温度降低 40.63 °C,在环境温度为 40 °C 时将 PCM 的凝固时间优化为 800 秒。研究结果表明,与 PCM 集成的优化配置扩展鳍片可降低高 C 速率运行期间的峰值温度,并缩短 PCM 在放电-单机和放电-充电阶段的恢复时间,即使在极端环境下,也能在重复循环中实现不间断功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Thermal Engineering
Applied Thermal Engineering 工程技术-工程:机械
CiteScore
11.30
自引率
15.60%
发文量
1474
审稿时长
57 days
期刊介绍: Applied Thermal Engineering disseminates novel research related to the design, development and demonstration of components, devices, equipment, technologies and systems involving thermal processes for the production, storage, utilization and conservation of energy, with a focus on engineering application. The journal publishes high-quality and high-impact Original Research Articles, Review Articles, Short Communications and Letters to the Editor on cutting-edge innovations in research, and recent advances or issues of interest to the thermal engineering community.
期刊最新文献
Heat transfer enhancement of solar collector tube enhanced by swirling flow Experimental study and optimization analysis of start control strategy for the transcritical carbon dioxide heat pump Experimental study on the heat transfer characteristics of flat-plate micro heat pipe arrays with grooved porous wick structure and porous copper foam inserts Spray and flame characteristics of an ultra-compact combustor for gas turbines Straight ultra-thin vapor chambers tested under different modes for different vapor duct thicknesses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1