Kai Guo , Hongxi Jin , Yanhong Wei , Qingguo Wang , Jicheng Chen
{"title":"Experimental study on morphology, microstructure and mechanical properties of adjustable-ring-mode (ARM) laser welded Al-Mg alloy","authors":"Kai Guo , Hongxi Jin , Yanhong Wei , Qingguo Wang , Jicheng Chen","doi":"10.1016/j.cirpj.2024.07.004","DOIUrl":null,"url":null,"abstract":"<div><p>Adjustable-ring-mode (ARM) laser welding displays great potential for improving the stability of the molten pool and the weld quality of aluminum alloys through the coaxial attachment of a large-sized ring-beam spot. In this paper, the author embarked on a systematic study on the impact of varied core powers, ring powers, and core/ring power ratios on the weld morphology, microstructure, and mechanical properties of Al-Mg alloy during the laser welding process with ARM. The results showed that the core power led to higher depth of penetration, and the superheating of the molten pool it created caused grain coarsening and reduced properties. The ring beam effectively decreased weld spatter and enhanced the surface roughness of the weld. Furthermore, the ring beam was more likely to obtain a wider columnar crystal zone and a more homogeneous grain size distribution. The welded joints possessed higher tensile strength values when ring beam power was increased from 1.5 to 2 kW due to the improvement of surface flatness and porosity defects by the ring beam.</p></div>","PeriodicalId":56011,"journal":{"name":"CIRP Journal of Manufacturing Science and Technology","volume":"53 ","pages":"Pages 81-94"},"PeriodicalIF":4.6000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CIRP Journal of Manufacturing Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755581724001123","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Adjustable-ring-mode (ARM) laser welding displays great potential for improving the stability of the molten pool and the weld quality of aluminum alloys through the coaxial attachment of a large-sized ring-beam spot. In this paper, the author embarked on a systematic study on the impact of varied core powers, ring powers, and core/ring power ratios on the weld morphology, microstructure, and mechanical properties of Al-Mg alloy during the laser welding process with ARM. The results showed that the core power led to higher depth of penetration, and the superheating of the molten pool it created caused grain coarsening and reduced properties. The ring beam effectively decreased weld spatter and enhanced the surface roughness of the weld. Furthermore, the ring beam was more likely to obtain a wider columnar crystal zone and a more homogeneous grain size distribution. The welded joints possessed higher tensile strength values when ring beam power was increased from 1.5 to 2 kW due to the improvement of surface flatness and porosity defects by the ring beam.
期刊介绍:
The CIRP Journal of Manufacturing Science and Technology (CIRP-JMST) publishes fundamental papers on manufacturing processes, production equipment and automation, product design, manufacturing systems and production organisations up to the level of the production networks, including all the related technical, human and economic factors. Preference is given to contributions describing research results whose feasibility has been demonstrated either in a laboratory or in the industrial praxis. Case studies and review papers on specific issues in manufacturing science and technology are equally encouraged.