{"title":"The role of fermentation with lactic acid bacteria in quality and health effects of plant-based dairy analogues","authors":"Erenay Erem, Meral Kilic-Akyilmaz","doi":"10.1111/1541-4337.13402","DOIUrl":null,"url":null,"abstract":"<p>The modern food industry is undergoing a rapid change with the trend of production of plant-based food products that are more sustainable and have less impact on nature. Plant-based dairy analogues have been increasingly popular due to their suitability for individuals with milk protein allergy or lactose intolerance and those preferring a plant-based diet. Nevertheless, plant-based products still have insufficient nutritional quality, undesirable structure, and earthy, green, and bean-like flavor compared to dairy products. In addition, most plant-based foods contain lesser amounts of essential nutrients, antinutrients limiting the bioavailability of some nutrients, and allergenic proteins. Novel processing technologies can be applied to have a homogeneous and stable structure. On the other hand, fermentation of plant-based matrix with lactic acid bacteria can provide a solution to most of these problems. Additional nutrients can be produced and antinutrients can be degraded by bacterial metabolism, thereby increasing nutritional value. Allergenic proteins can be hydrolyzed reducing their immunoreactivity. In addition, fermentation has been found to reduce undesired flavors and to enhance various bioactivities of plant foods. However, the main challenge in the production of fermented plant-based dairy analogues is to mimic familiar dairy-like flavors by producing the major flavor compounds other than organic acids, yielding a flavor profile similar to those of fermented dairy products. Further studies are required for the improvement of the flavor of fermented plant-based dairy analogues through the selection of special microbial cultures and formulations.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"23 4","pages":""},"PeriodicalIF":12.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1541-4337.13402","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comprehensive Reviews in Food Science and Food Safety","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1541-4337.13402","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The modern food industry is undergoing a rapid change with the trend of production of plant-based food products that are more sustainable and have less impact on nature. Plant-based dairy analogues have been increasingly popular due to their suitability for individuals with milk protein allergy or lactose intolerance and those preferring a plant-based diet. Nevertheless, plant-based products still have insufficient nutritional quality, undesirable structure, and earthy, green, and bean-like flavor compared to dairy products. In addition, most plant-based foods contain lesser amounts of essential nutrients, antinutrients limiting the bioavailability of some nutrients, and allergenic proteins. Novel processing technologies can be applied to have a homogeneous and stable structure. On the other hand, fermentation of plant-based matrix with lactic acid bacteria can provide a solution to most of these problems. Additional nutrients can be produced and antinutrients can be degraded by bacterial metabolism, thereby increasing nutritional value. Allergenic proteins can be hydrolyzed reducing their immunoreactivity. In addition, fermentation has been found to reduce undesired flavors and to enhance various bioactivities of plant foods. However, the main challenge in the production of fermented plant-based dairy analogues is to mimic familiar dairy-like flavors by producing the major flavor compounds other than organic acids, yielding a flavor profile similar to those of fermented dairy products. Further studies are required for the improvement of the flavor of fermented plant-based dairy analogues through the selection of special microbial cultures and formulations.
期刊介绍:
Comprehensive Reviews in Food Science and Food Safety (CRFSFS) is an online peer-reviewed journal established in 2002. It aims to provide scientists with unique and comprehensive reviews covering various aspects of food science and technology.
CRFSFS publishes in-depth reviews addressing the chemical, microbiological, physical, sensory, and nutritional properties of foods, as well as food processing, engineering, analytical methods, and packaging. Manuscripts should contribute new insights and recommendations to the scientific knowledge on the topic. The journal prioritizes recent developments and encourages critical assessment of experimental design and interpretation of results.
Topics related to food safety, such as preventive controls, ingredient contaminants, storage, food authenticity, and adulteration, are considered. Reviews on food hazards must demonstrate validity and reliability in real food systems, not just in model systems. Additionally, reviews on nutritional properties should provide a realistic perspective on how foods influence health, considering processing and storage effects on bioactivity.
The journal also accepts reviews on consumer behavior, risk assessment, food regulations, and post-harvest physiology. Authors are encouraged to consult the Editor in Chief before submission to ensure topic suitability. Systematic reviews and meta-analyses on analytical and sensory methods, quality control, and food safety approaches are welcomed, with authors advised to follow IFIS Good review practice guidelines.